Brange J, Andersen L, Laursen E D, Meyn G, Rasmussen E
Novo Nordisk A/S, Novo Alle, Bagsvaerd, Denmark.
J Pharm Sci. 1997 May;86(5):517-25. doi: 10.1021/js960297s.
Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.
胰岛素原纤维的形成是一个物理过程,在此过程中,部分展开的胰岛素分子相互作用形成线性聚集体。疏水结构域的屏蔽是这一过程的主要驱动力,但分子间β-折叠的形成可能会进一步稳定原纤维结构。B链C末端的构象位移以及非极性脂肪族核心残基(包括A2、A3、B11和B15)的暴露在纤维化过程中起着关键作用。最近的晶体分析和分子模拟研究表明,胰岛素纤维化时,这个暴露的结构域会与由脂肪族残基A13、B6、B14、B17和B18形成的疏水表面结构域相互作用,当三个胰岛素二聚体形成六聚体时,这些残基通常被掩埋。在兔子免疫实验中,与天然胰岛素相比,胰岛素原纤维在形成IgG胰岛素抗体方面并未引发增强的免疫反应。相反,IgE反应随着纤维状胰岛素含量的增加而增强。本文综述了防止胰岛素形成原纤维的策略和实际方法。稳定胰岛素六聚体结构以及通过添加表面活性剂阻断疏水界面是对抗胰岛素纤维化的最有效手段。