Wan Zhu-li, Huang Kun, Xu Bin, Hu Shi-Quan, Wang Shuhua, Chu Ying-Chi, Katsoyannis Panayotis G, Weiss Michael A
Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA.
Biochemistry. 2005 Apr 5;44(13):5000-16. doi: 10.1021/bi047585k.
Naturally occurring mutations in insulin associated with diabetes mellitus identify critical determinants of its biological activity. Here, we describe the crystal structure of insulin Wakayama, a clinical variant in which a conserved valine in the A chain (residue A3) is substituted by leucine. The substitution occurs within a crevice adjoining the classical receptor-binding surface and impairs receptor binding by 500-fold, an unusually severe decrement among mutant insulins. To resolve whether such decreased activity is directly or indirectly mediated by the variant side chain, we have determined the crystal structure of Leu(A3)-insulin and investigated the photo-cross-linking properties of an A3 analogue containing p-azidophenylalanine. The structure, characterized in a novel crystal form as an R(6) zinc hexamer at 2.3 A resolution, is essentially identical to that of the wild-type R(6) hexamer. The variant side chain remains buried in a nativelike crevice with small adjustments in surrounding side chains. The corresponding photoactivatable analogue, although of low affinity, exhibits efficient cross-linking to the insulin receptor. The site of photo-cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This domain, unrelated in sequence to the major insulin-binding region in the N-terminal L1 beta-helix, is also contacted by photoactivatable probes at positions A8 and B25. Packing of Val(A3) at this interface may require a conformational change in the B chain to expose the A3-related crevice. The structure of insulin Wakayama thus evokes the reasoning of Sherlock Holmes in "the curious incident of the dog in the night": the apparent absence of structural perturbations (like the dog that did not bark) provides a critical clue to the function of a hidden receptor-binding surface.
与糖尿病相关的胰岛素自然发生的突变确定了其生物活性的关键决定因素。在此,我们描述了胰岛素和歌山的晶体结构,它是一种临床变体,其中A链中一个保守的缬氨酸(残基A3)被亮氨酸取代。该取代发生在与经典受体结合表面相邻的一个裂隙内,使受体结合受损500倍,这在突变胰岛素中是异常严重的下降。为了确定这种活性降低是由变体侧链直接还是间接介导的,我们确定了亮氨酸(A3)-胰岛素的晶体结构,并研究了含对叠氮苯丙氨酸的A3类似物的光交联特性。该结构以一种新颖的晶体形式表征为分辨率为2.3 Å的R(6)锌六聚体,与野生型R(6)六聚体基本相同。变体侧链仍埋藏在类似天然的裂隙中,周围侧链有小的调整。相应的光可激活类似物虽然亲和力低,但对胰岛素受体表现出有效的交联。光交联位点位于α亚基的一个14 kDa C末端结构域内。该结构域在序列上与N末端L1β螺旋中的主要胰岛素结合区域无关,在A8和B25位置也与光可激活探针接触。Val(A3)在此界面的堆积可能需要B链发生构象变化以暴露与A3相关的裂隙。因此,胰岛素和歌山的结构让人想起福尔摩斯在《夜间的狗的离奇事件》中的推理:明显没有结构扰动(就像那只不叫的狗)为一个隐藏的受体结合表面的功能提供了关键线索。