Suppr超能文献

Isolation and structure elucidation of the major degradation products of cefaclor in the solid state.

作者信息

Dorman D E, Lorenz L J, Occolowitz J L, Spangle L A, Collins M W, Bashore F N, Baertschi S W

机构信息

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285-0724, USA.

出版信息

J Pharm Sci. 1997 May;86(5):540-9. doi: 10.1021/js960428p.

Abstract

Cefaclor is a beta-lactam antibiotic that degrades slowly under normal storage conditions to several minor products. To obtain samples large enough to permit structure elucidation, cefaclor was allowed to degrade at 40 degrees C (75% relative humidity) and at 85 degrees C. The profile of degradation products formed under these conditions is qualitatively similar to the profile of degradation products observed in samples of cefaclor aged for 14 years at room temperature, although some products found in the sample degraded at 85 degrees C are not formed at the lower temperatures. Using preparative reversed-phase high-performance liquid chromatography (rp-HPLC) and a combination of spectroscopic methods, we have isolated and characterized 17 of these degradation products. Some of these products were also isolated from studies of aqueous degradations. The major products appear to have arisen from five distinct pathways: (1) isomerization of the double bond in the dihydrothiazine ring; (2) decarboxylation; (3) ring contraction of the cephem nucleus to thiazole structures; (4) oxidative attack at carbon 4 of the dihydrothiazine ring; and (5) intramolecular attack of the primary amine of the side chain on either the beta-lactam carbonyl to form 3-phenyl-2,5-diketopiperazines or the "masked aldehyde" at carbon 6 to form 2-hydroxy-3-phenylpyrazine derivatives. The pathway involving oxidation at carbon 4 is particularly important at ambient temperatures and is unique to the solid-state degradation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验