Wulfsohn M S, Tsiatis A A
Department of Statistics, North Carolina State University, Raleigh 27695-8203, USA.
Biometrics. 1997 Mar;53(1):330-9.
The relationship between a longitudinal covariate and a failure time process can be assessed using the Cox proportional hazards regression model. We consider the problem of estimating the parameters in the Cox model when the longitudinal covariate is measured infrequently and with measurement error. We assume a repeated measures random effects model for the covariate process. Estimates of the parameters are obtained by maximizing the joint likelihood for the covariate process and the failure time process. This approach uses the available information optimally because we use both the covariate and survival data simultaneously. Parameters are estimated using the expectation-maximization algorithm. We argue that such a method is superior to naive methods where one maximizes the partial likelihood of the Cox model using the observed covariate values. It also improves on two-stage methods where, in the first stage, empirical Bayes estimates of the covariate process are computed and then used as time-dependent covariates in a second stage to find the parameters in the Cox model that maximize the partial likelihood.
纵向协变量与失效时间过程之间的关系可以使用Cox比例风险回归模型进行评估。我们考虑当纵向协变量测量频率较低且存在测量误差时,估计Cox模型中参数的问题。我们为协变量过程假设一个重复测量随机效应模型。通过最大化协变量过程和失效时间过程的联合似然来获得参数估计。这种方法最优地利用了可用信息,因为我们同时使用了协变量和生存数据。使用期望最大化算法估计参数。我们认为这种方法优于朴素方法,即在朴素方法中,人们使用观察到的协变量值最大化Cox模型的偏似然。它也改进了两阶段方法,在第一阶段计算协变量过程的经验贝叶斯估计,然后在第二阶段将其用作随时间变化的协变量,以找到Cox模型中最大化偏似然的参数。