Suppr超能文献

一种使用患者登记数据的(无)界纵向标志物、竞争风险和复发事件的联合模型。

A Joint Model for (Un)Bounded Longitudinal Markers, Competing Risks, and Recurrent Events Using Patient Registry Data.

作者信息

Miranda Afonso Pedro, Rizopoulos Dimitris, Palipana Anushka K, Gecili Emrah, Brokamp Cole, Clancy John P, Szczesniak Rhonda D, Andrinopoulou Eleni-Rosalina

机构信息

Department of Biostatistics, Erasmus University Medical Center, Rotterdam, the Netherlands.

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.

出版信息

Stat Med. 2025 Apr;44(8-9):e70057. doi: 10.1002/sim.70057.

Abstract

Joint models for longitudinal and survival data have become a popular framework for studying the association between repeatedly measured biomarkers and clinical events. Nevertheless, addressing complex survival data structures, especially handling both recurrent and competing event times within a single model, remains a challenge. This causes important information to be disregarded. Moreover, existing frameworks rely on a Gaussian distribution for continuous markers, which may be unsuitable for bounded biomarkers, resulting in biased estimates of associations. To address these limitations, we propose a Bayesian shared-parameter joint model that simultaneously accommodates multiple (possibly bounded) longitudinal markers, a recurrent event process, and competing risks. We use the beta distribution to model responses bounded within any interval without sacrificing the interpretability of the association. The model offers various forms of association, discontinuous risk intervals, and both gap and calendar timescales. A simulation study shows that it outperforms simpler joint models. We utilize the US Cystic Fibrosis Foundation Patient Registry to study the associations between changes in lung function and body mass index, and the risk of recurrent pulmonary exacerbations, while accounting for the competing risks of death and lung transplantation. Our efficient implementation allows fast fitting of the model despite its complexity and the large sample size from this patient registry. Our comprehensive approach provides new insights into cystic fibrosis disease progression by quantifying the relationship between the most important clinical markers and events more precisely than has been possible before. The model implementation is available in the R package JMbayes2.

摘要

纵向数据和生存数据的联合模型已成为研究重复测量的生物标志物与临床事件之间关联的常用框架。然而,处理复杂的生存数据结构,尤其是在单个模型中处理复发事件和竞争事件时间,仍然是一个挑战。这导致重要信息被忽略。此外,现有框架对连续标志物采用高斯分布,这可能不适用于有界生物标志物,从而导致关联估计有偏差。为了解决这些局限性,我们提出了一种贝叶斯共享参数联合模型,该模型同时容纳多个(可能有界的)纵向标志物、一个复发事件过程和竞争风险。我们使用贝塔分布对任何区间内有界的反应进行建模,同时不牺牲关联的可解释性。该模型提供了各种形式的关联、不连续的风险区间以及间隔时间尺度和日历时间尺度。一项模拟研究表明,它优于更简单的联合模型。我们利用美国囊性纤维化基金会患者登记处的数据,研究肺功能变化与体重指数之间的关联,以及复发性肺部加重的风险,同时考虑死亡和肺移植的竞争风险。尽管该模型复杂且患者登记处样本量很大,但我们高效的实现方式仍能实现快速拟合。我们的综合方法通过比以往更精确地量化最重要的临床标志物与事件之间的关系,为囊性纤维化疾病进展提供了新的见解。该模型的实现可在R包JMbayes2中获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f8d/12023843/7bdec95f0eef/SIM-44-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验