Suppr超能文献

Electrogenic ion transport in the mouse endometrium: functional aspects of the cultured epithelium.

作者信息

Chan H C, Liu C Q, Fong S K, Law S H, Leung P S, Leung P Y, Fu W O, Cheng Chew S B, Wong P Y

机构信息

Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.

出版信息

Biochim Biophys Acta. 1997 Apr 24;1356(2):140-8. doi: 10.1016/s0167-4889(96)00171-1.

Abstract

A primary culture of mouse endometrial epithelium grown on permeable supports was established and the electrogenic ion transport across the endometrial epithelium was studied using the short-circuit current (I(SC)) technique. Enzymatically isolated mouse endometrial cells were immunostained with epithelial cells markers, cytokeratins, indicating an epithelial origin of the culture. Mouse endometrial epithelial cells grown on Millipore filters formed polarized monolayers with junctional complexes as revealed by light and electron microscopy. The cultured monolayers exhibited an average basal I(SC) of 4.6 +/- 0.3 microA/cm2, transepithelial voltage of 2.7 +/- 0.2 mV and transepithelial resistance of 599 +/- 30 omega cm2. The basal current was reduced by 85% in Na+-free solution and 13% in Cl(-)-free solution. The basal current could also be substantially (57.7%) blocked by an apical Na+ channel blocker, amiloride (10 microM), suggesting that Na+ absorption largely contributed to the basal current. Apical addition of Cl- channel blocker, DPC (2 mM), also exhibited an inhibitory effect, 19.4%, on the basal I(SC), indicating minor involvement of Cl- secretion as compared to that of Na+ absorption. The cultured endometrial epithelium also responded to a number of secretagogues including adrenaline and forskolin with increases in the I(SC), which could involve substantial Cl- secretion. The present study has established a culture of mouse endometrial epithelium exhibiting predominantly Na+ absorption under unstimulated condition, and Cl- secretion in response to various secretagogues. This culture may be useful for studying various regulatory mechanisms of electrogenic ion transport across the endometrial epithelium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验