Clark A C, Frieden C
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA.
J Mol Biol. 1997 May 2;268(2):512-25. doi: 10.1006/jmbi.1997.0969.
Using stopped-flow fluorescence techniques, we have examined both the refolding and unfolding reactions of four structurally homologous dihydrofolate reductases (murine DHFR, wild-type E. coli DHFR, and two E. coli DHFR mutants) in the presence and absence of the molecular chaperonin GroEL. We show that GroEL binds the unfolded conformation of each DHFR with second order rate constants greater than 3 x 10(7) M(-1)s(-1) at 22 degrees C. Once bound to GroEL, the proteins refold with rate constants similar to those for folding in the absence of GroEL. The overall rate of formation of native enzyme is decreased by the stability of the complex between GroEL and the last folding intermediate. For wild-type E. coli DHFR, complex formation is transient while for the others, a stable complex is formed. The stable complexes are the same regardless of whether they are formed from the unfolded or folded DHFR. When complex formation is initiated from the native conformation, GroEL binds to a pre-existing non-native conformation, presumably a late folding intermediate, rather than to the native state, thus shifting the conformational equilibrium toward the non-native species by mass action. The model presented here for the interaction of these four proteins with GroEL quantitatively describes the difference between the formation of a transient complex and a stable complex as defined by the rate constants for release and rebinding to GroEL relative to the rate constant for the last folding step. Due to this kinetic partitioning, three different mechanisms can be proposed for the formation of stable complexes between GroEL and either murine DHFR or the two E. coli DHFR mutants. These data show that productive folding of GroEL-bound proteins can occur in the absence of nucleotides or the co-chaperonin GroES and suggest that transient complex formation may be the functional role of GroEL under normal conditions.
我们使用停流荧光技术,研究了四种结构同源的二氢叶酸还原酶(小鼠二氢叶酸还原酶、野生型大肠杆菌二氢叶酸还原酶以及两种大肠杆菌二氢叶酸还原酶突变体)在有和没有分子伴侣GroEL存在时的重折叠和去折叠反应。我们发现,在22℃下,GroEL以大于3×10⁷ M⁻¹s⁻¹的二级速率常数结合每种二氢叶酸还原酶的未折叠构象。一旦与GroEL结合,这些蛋白质的重折叠速率常数与在没有GroEL时折叠的速率常数相似。天然酶形成的总体速率因GroEL与最后折叠中间体之间复合物的稳定性而降低。对于野生型大肠杆菌二氢叶酸还原酶,复合物的形成是短暂的,而对于其他酶,则形成稳定的复合物。无论稳定复合物是由未折叠的还是折叠的二氢叶酸还原酶形成,它们都是相同的。当从天然构象开始形成复合物时,GroEL结合到预先存在的非天然构象,大概是一个晚期折叠中间体,而不是天然状态,从而通过质量作用使构象平衡向非天然物种移动。这里提出的关于这四种蛋白质与GroEL相互作用的模型,定量描述了由相对于最后折叠步骤的速率常数的释放和重新结合到GroEL的速率常数所定义的短暂复合物和稳定复合物形成之间的差异。由于这种动力学分配,可以提出三种不同的机制来解释GroEL与小鼠二氢叶酸还原酶或两种大肠杆菌二氢叶酸还原酶突变体之间稳定复合物的形成。这些数据表明,在没有核苷酸或共伴侣GroES的情况下,与GroEL结合的蛋白质也能进行有效的折叠,这表明短暂复合物的形成可能是GroEL在正常条件下的功能作用。