Flaud P, Bensalah A, Peronneau P
Laboratoire de Biorhéologie et d'Hydrodynamique Physico-Chimique, L.A.C.N.R.S. 343, Université Paris VII, France.
Ultrasound Med Biol. 1997;23(3):425-36. doi: 10.1016/s0301-5629(96)00200-1.
A numerically based simulation of pulsed Doppler ultrasound convolution and deconvolution of theoretical hemodynamic velocity profiles yields two major conclusions on performing a deconvolution process. First, the most important parameter to be accounted for is the size of the sample volume. Second, a deconvolution process with an overestimated sample volume size is revealed by high-frequency noise on the resulting profile. A deconvolution process is presented for in vivo arterial velocity profiles, which has the advantage of being systematic and not needing experimental testing for determining the size or the shape of the sample volume. It is also independent of the observation angle. Finally, an example of an application to in vivo human velocity profiles is given. Evaluation of the wall shear rate from the corrected deconvolved profiles shows a noticeable improvement with respect to that using the directly convolved Doppler profiles.
基于数值的脉冲多普勒超声卷积以及理论血流动力学速度剖面反卷积模拟,在执行反卷积过程时得出了两个主要结论。首先,需要考虑的最重要参数是样本体积的大小。其次,反卷积过程中若样本体积大小估计过高,会在所得剖面上表现为高频噪声。本文提出了一种针对体内动脉速度剖面的反卷积过程,其优点是具有系统性,且无需通过实验测试来确定样本体积的大小或形状。它也与观测角度无关。最后,给出了一个应用于体内人体速度剖面的示例。从校正后的反卷积剖面评估壁面剪切率,相较于使用直接卷积的多普勒剖面有显著改善。