Hiebert J M, Fan Q, Smith P G
Department of Physiology, University of Kansas Medical Center, Kansas City 66160-7401, USA.
Brain Res Dev Brain Res. 1997 May 20;100(1):35-42. doi: 10.1016/s0165-3806(97)00014-x.
Sympathetic axons can form atypical pathways to denervated orbital targets in neonatal rats but not in rats aged 30 or more days. The objective of this study was to determine if connective tissue pathways that carry sympathetic nerves lose their ability to sustain axonal sprouting during the early postnatal period. Regions of periorbital sheath known to contain large numbers of sympathetic axons that travel to distal orbital targets were excised from rats (sympathectomized 3 days previously) on postnatal days 6-7, 14-15, 30-31, and 48-49 and placed in anterior chambers of adult host rats. Tissues were removed 3, 6, or 10 days post-transplant and sympathetic ingrowth was analyzed by catecholamine histofluorescence in whole-mount or cryosectioned specimens. Connective tissue transplants from 6-15-day-old donors showed significant fiber ingrowth by 3 days in oculo, and innervation was maximal by 6 days. In contrast, sprouting into 30-49-day-old tissue was significantly slower, with most transplants lacking fibers at 3 days, and with small numbers of short fibers present at 6 days. We conclude that maturational changes occur in periorbital connective tissue pathways in the early postnatal period which make them less receptive to ingrowth by sympathetic nerves. The findings that connective tissue pathways are better substrates for sympathetic sprouting in the neonatal rat supports the view that developmental changes in these tissues are likely to contribute to the impaired reinnervation of orbital targets by contralateral neurons in juvenile and adult rats.