Suppr超能文献

Inhibition of ion transport in septic rat heart: 133Cs+ as an NMR active K+ analog.

作者信息

Schornack P A, Song S K, Hotchkiss R, Ackerman J J

机构信息

Department of Chemistry, Washington University, St. Louis 63130, Missouri.

出版信息

Am J Physiol. 1997 May;272(5 Pt 1):C1635-41. doi: 10.1152/ajpcell.1997.272.5.C1635.

Abstract

Sepsis, the systemic response to severe infection, and the resulting multiorgan failure it induces are major contributors to intensive care unit morbidity and mortality. A number of abnormalities in ion transport processes and intracellular free Na+ ([Na+]i) and K+ ([K+]i) concentrations have been reported to occur during sepsis/endotoxemia. An effect of sepsis on the NA(+)-K(+)-ATPase may be an important contribution to changes in intracellular ion balance and the resultant pathophysiology of the disorder. The purpose of this study was to examine the effect of sepsis on the Na(+)-K(+)-ATPase in the isolated perfused rat heart using 133Cs+ nuclear magnetic resonance (NMR). Cs+ is a K+ analog, and 133Cs-NMR offers the opportunity to examine Na(+)-K(+)-ATPase activity in the intact organ via tracer kinetics. Sepsis was induced in halothane-anesthetized male Sprague-Dawley rats using the cecal ligation and perforation (CLP) model. Twenty-four to thirty-six hours after surgery, hearts from CLP or sham-operated rats were perfused with Krebs-Henseleit buffer containing 1.25 mM Cs+. The influx rate constant for Cs+ was decreased by 24% in septic rat hearts, i.e., 0.25 +/- 0.08 (SD) min 1 for controls and 0.19 +/- 0.04 (SD) min-1 for septic animals (P = 0.003). There was no difference for Cs+ efflux [0.005 +/- 0.001 (SD) min-1 for controls and 0.005 +/- 0.002 (SD) min-1 for septic animals; P = 0.8]. These results are consistent with an inhibition of the Na(+)-K(+)-ATPase pump during sepsis/endotoxemia. A decrease in the activity of the Na(+)-K(+)-ATPase pump may be responsible for or contribute to the changes in [Na+]i and [K+]i during the disorder.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验