Suppr超能文献

用于合理集选择和组合文库分析的相似性度量:基于不同属性衍生(DPD)的方法。

Similarity measures for rational set selection and analysis of combinatorial libraries: the Diverse Property-Derived (DPD) approach.

作者信息

Lewis R A, Mason J S, McLay I M

机构信息

Dagenham Research Centre, Rhone-Poulenc Rorer, Essex.

出版信息

J Chem Inf Comput Sci. 1997 May-Jun;37(3):599-614. doi: 10.1021/ci960471y.

Abstract

The generation of new chemical leads for biological targets is a very challenging task for researchers in the pharmaceutical industry. The design of representative screening sets and combinatorial libraries is central to achieving this objective. In this paper, we describe a novel molecular descriptor, the Diverse Property-Derived (DPD) code, that contains information about key molecular and physicochemical properties of a molecule. The utility of this descriptor is explored through its application for the selection of a maximally diverse representative screening set, through the selection of secondary screening sets to obtain more information concerning the structure-activity relationships (SAR) of a particular target receptor, and through the profiling of combinatorial libraries. The usefulness of physicochemical/molecular property descriptors, such as the DPD code, is discussed critically.

摘要

对于制药行业的研究人员而言,为生物学靶点生成新的化学先导物是一项极具挑战性的任务。设计具有代表性的筛选集和组合文库是实现这一目标的核心。在本文中,我们描述了一种新型分子描述符——多样性质衍生(DPD)编码,它包含有关分子关键分子和物理化学性质的信息。通过将该描述符应用于选择最大程度多样化的代表性筛选集、选择二级筛选集以获取有关特定靶受体结构 - 活性关系(SAR)的更多信息以及组合文库的分析,来探索其效用。同时对物理化学/分子性质描述符(如DPD编码)的实用性进行了批判性讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验