Taylor M J, Dervan P B
Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA.
Bioconjug Chem. 1997 May-Jun;8(3):354-64. doi: 10.1021/bc970035x.
Attachment of a nondiffusible bromoacetyl electrophile to the 5-position of a thymine at the 5'-end of a pyrimidine oligodeoxyribonucleotide affords sequence-specific alkylation of a guanine base in duplex DNA two base pairs to the 5'-side of a local triple-helical complex. Products resulting from reaction of 5'-ETTTTMeCTTTTMeCMeCTTTMeCTTTT-3' at 37 degrees C with a 29 base pair target duplex are determined by a gel mobility analysis to be oligonucleotides terminating in 5'- and 3' -phosphate functional groups, consistent with a mechanism involving alkylation, glycosidic bond cleavage, and base-promoted strand cleavage. The guanine-(linker)-oligonucleotide conjugate formed upon triple-helix-mediated alkylation at the N7 position of a guanine base in a 60 base pair duplex was identified by enzymatic phosphodiester hydrolysis of the alkylation products followed by reversed phase HPLC analysis. To determine the rate enhancement achieved by oligonucleotide-directed alkylation of duplex DNA, a comparison of rates of alkylation at N7 of guanine in double-stranded DNA by the N-bromoacetyloligonucleotide and 2-bromoacetamide was performed by a polyacrylamide gel assay. The reaction within the triple-helical complex on a restriction fragment was determined at 200 nM N-bromoacetyloligonucleotide to have a first-order rate constant k1 of (2.7 +/- 0.5) x 10(-5) S(-1) (t1/2 = 7.2 h). The reaction of 2-bromoacetamide with a 39 base pair duplex of sequence corresponding to the restriction fragment targeted by triple-helix formation was determined to have a second-order rate constant k2 of (3.6 +/- 0.3) x 10(-5) M(-1) S(-1). A comparison of the first-order and second-order rate constants for the unimolecular and bimolecular alkylation reactions provides an effective molarity of 0.8 M for bromoacetyl within the triple-helical complex.
将一种不可扩散的溴乙酰亲电试剂连接到嘧啶寡脱氧核糖核苷酸5'端胸腺嘧啶的5位上,可实现双链DNA中鸟嘌呤碱基在局部三链螺旋复合物5'侧两个碱基对处的序列特异性烷基化。通过凝胶迁移分析确定,5'-ETTTTMeCTTTTMeCMeCTTTMeCTTTT-3'在37℃下与一个29碱基对的靶双链体反应产生的产物是末端带有5'-和3'-磷酸官能团的寡核苷酸,这与涉及烷基化、糖苷键断裂和碱基促进的链断裂的机制一致。通过对烷基化产物进行酶促磷酸二酯水解,然后进行反相HPLC分析,鉴定了在一个60碱基对双链体中鸟嘌呤碱基的N7位上通过三链螺旋介导的烷基化形成的鸟嘌呤-(连接子)-寡核苷酸缀合物。为了确定双链DNA的寡核苷酸导向烷基化所实现的速率增强,通过聚丙烯酰胺凝胶分析比较了N-溴乙酰寡核苷酸和2-溴乙酰胺对双链DNA中鸟嘌呤N7位的烷基化速率。在200 nM N-溴乙酰寡核苷酸条件下,限制片段上三链螺旋复合物内的反应确定具有(2.7±0.5)×10⁻⁵ s⁻¹的一级速率常数k1(t1/2 = 7.2小时)。确定2-溴乙酰胺与对应于通过三链螺旋形成靶向的限制片段序列的39碱基对双链体的反应具有(3.6±0.3)×10⁻⁵ M⁻¹ s⁻¹的二级速率常数k2。单分子和双分子烷基化反应的一级和二级速率常数的比较表明,三链螺旋复合物内溴乙酰的值为0.8 M。