Department of Chemistry, University of Missouri, 125 Chemistry Building Columbia, Missouri 65211, United States.
Chem Res Toxicol. 2011 Feb 18;24(2):217-28. doi: 10.1021/tx100282b. Epub 2011 Jan 20.
Some biologically active chemicals are relatively stable in the extracellular environment but, upon entering the cell, undergo biotransformation into reactive intermediates that covalently modify DNA. The diverse chemical reactions involved in the bioactivation of DNA-damaging agents are both fundamentally interesting and of practical importance in medicinal chemistry and toxicology. The work described here examines the bioactivation of α-haloacrolyl-containing molecules. The α-haloacrolyl moiety is found in a variety of cytotoxic natural products including clionastatin B, bromovulone III, discorahabdins A, B, and C, and trichodenone C, in mutagens such as 2-bromoacrolein and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and in the anticancer drug candidates brostallicin and PNU-151807. Using α-bromo-2-cyclopentenone (1) as a model compound, the activation of α-haloacrolyl-containing molecules by biological thiols was explored. The results indicate that both low molecular weight and peptide thiols readily undergo conjugate addition to 1. The resulting products are consistent with a mechanism in which initial addition of thiols to 1 is followed by intramolecular displacement of bromide to yield a DNA-alkylating episulfonium ion intermediate. The reaction of thiol-activated 1 with DNA produces labile lesions at deoxyguanosine residues. The sequence specificity and salt dependence of this process is consistent with involvement of an episulfonium ion intermediate. The alkylated guanine residue resulting from the thiol-triggered reaction of 1 with duplex DNA was characterized using mass spectrometry. The results provide new insight regarding the mechanisms by which thiols can bioactivate small molecules and offer a more complete understanding of the molecular mechanisms underlying the biological activity of cytotoxic, mutagenic, and medicinal compounds containing the α-haloacrolyl group.
某些具有生物活性的化学物质在细胞外环境中相对稳定,但进入细胞后,会发生生物转化,形成反应性中间体,从而使 DNA 发生共价修饰。在 DNA 损伤剂的生物活化中涉及的各种化学反应既具有基础研究的意义,也具有医学化学和毒理学的实际重要性。这里描述的工作检查了含α-卤代酰基的分子的生物活化。α-卤代酰基部分存在于多种细胞毒性天然产物中,包括 clionastatin B、bromovulone III、discorahabdins A、B 和 C,以及 trichodenone C,在诱变剂如 2-溴丙烯醛和 3-氯-4-(二氯甲基)-5-羟基-2(5H)-呋喃酮(MX),以及抗癌药物候选物 brostallicin 和 PNU-151807 中。使用α-溴-2-环戊烯酮(1)作为模型化合物,探索了生物硫醇对含α-卤代酰基的分子的激活。结果表明,低分子量和肽硫醇都容易与 1 发生共轭加成。所得产物与一个机制一致,即在硫醇最初加成到 1 后,溴化物发生分子内取代,生成 DNA-烷化的内锍离子中间体。硫醇激活的 1 与 DNA 反应在脱氧鸟苷残基上产生不稳定的损伤。这一过程的序列特异性和盐依赖性与内锍离子中间体的参与一致。通过质谱法对 1 与双链 DNA 发生的硫醇触发反应生成的烷化鸟嘌呤残基进行了表征。这些结果为硫醇生物活化小分子的机制提供了新的见解,并为含有α-卤代酰基的细胞毒性、诱变和药用化合物的生物学活性的分子机制提供了更全面的理解。