Suppr超能文献

Excitatory convergence of Y and non-Y information channels on single neurons in the PMLS area, a motion area of the cat visual cortex.

作者信息

Wang C, Dreher B, Huxlin K R, Burke W

机构信息

Department of Anatomy, Institute for Biomedical Research, University of Sydney, NSW, Australia.

出版信息

Eur J Neurosci. 1997 May;9(5):921-33. doi: 10.1111/j.1460-9568.1997.tb01443.x.

Abstract

We analysed the receptive field properties of neurons in the posteromedial lateral suprasylvian (PMLS) visual cortical area of anaesthetized cats in which there was selective conduction block of the largest (Y-type) fibres in one optic nerve. As in normal cats, in cats with selective block of one optic nerve the great majority of PMLS cells could be activated by photic stimulation through either eye. However, the responses evoked by stimulation via the eye with the selectively pressure-blocked optic nerve ('Y-blocked eye') were significantly weaker than those of the same cells evoked by the stimulation via the normal eye. Accordingly, eye dominance histograms were shifted markedly in favour of the normal eye. Furthermore, there was a significant shift towards lower preferred velocities when PMLS cells were photically stimulated via the Y-blocked eye. Finally, when stimulated via the Y-blocked eye, PMLS cells responded poorly or not at all to high stimulus velocities (> or = 100 degrees/s). On the other hand, a number of receptive field properties, such as the spatial organization of receptive fields, the size of the discharge fields, orientation tuning and direction selectivity indices, were not significantly affected by the removal of the Y input. We conclude that virtually all neurons in the PMLS area of the cat receive excitatory input from both Y and non-Y information channels, although the Y channel provides the dominant input and makes the principal contribution to the detection of high-velocity motion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验