Kogure T, Kogure K
Department of Neurosurgery, Tokyo Jikei University School of Medicine, Japan.
Clin Neurosci. 1997;4(4):179-83.
We review the molecular and biochemical events that occur within the brain during cerebral ischemia, based on recent investigations of focal cerebral ischemia models. Occlusion of the middle cerebral artery in rats produces focal ischemia. In contrast to the core where ischemia is severe and infarction develops rapidly, areas surrounding the core (called the penumbra) show a more moderate decrease of blood flow and can tolerate longer durations of ischemic stress. Reperfusion and pharmacological interventions can help to salvage the penumbra. Ischemic insult alters the genomic properties of the brain cells and selective production of heat shock proteins can be seen. Heat shock proteins are necessary in the repair of cell integrity, and is thought to be induced as a rescue program. Pre-ischemic induction of these proteins is known to cause ischemic tolerance, and methods to manipulate genes into inducing HSPs may be effective in protecting neurons from ischemia. Genes that promote apoptosis are also expressed after ischemia, and may cause secondary expansion of the infarction. Strategies to denote expression of these genes may be effective in reducing ischemic neuronal death. Activation of the inflammatory cells such as neutrophils and macrophages, in the ischemic region, may cause further post-ischemic damage. Investigations on the role and mechanics of inflammatory systems in ischemic neuronal injury may present a new target for therapeutic intervention against stroke.
基于对局灶性脑缺血模型的最新研究,我们回顾了脑缺血期间大脑内发生的分子和生化事件。大鼠大脑中动脉闭塞会导致局灶性缺血。与缺血严重且梗死迅速发展的核心区域不同,核心区域周围的区域(称为半暗带)血流减少更为适度,并且能够耐受更长时间的缺血应激。再灌注和药物干预有助于挽救半暗带。缺血性损伤会改变脑细胞的基因组特性,并且可以看到热休克蛋白的选择性产生。热休克蛋白在修复细胞完整性方面是必需的,并且被认为是作为一种救援程序而被诱导产生的。已知这些蛋白的缺血前诱导会导致缺血耐受性,并且操纵基因以诱导热休克蛋白的方法可能对保护神经元免受缺血影响有效。促进细胞凋亡的基因在缺血后也会表达,并且可能导致梗死的继发性扩大。抑制这些基因表达的策略可能对减少缺血性神经元死亡有效。缺血区域中中性粒细胞和巨噬细胞等炎症细胞的激活可能会导致缺血后进一步损伤。对炎症系统在缺血性神经元损伤中的作用和机制的研究可能为中风治疗干预提供一个新的靶点。