Sheaff R J, Groudine M, Gordon M, Roberts J M, Clurman B E
Division of Basic Sciences, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington 98104, USA.
Genes Dev. 1997 Jun 1;11(11):1464-78. doi: 10.1101/gad.11.11.1464.
CDK inhibitors are thought to prevent cell proliferation by negatively regulating cyclin-CDK complexes. We propose that the opposite is also true, that cyclin-CDK complexes in mammmalian cells can promote cell cycle progression by directly down-regulating CDK inhibitors. We show that expression of cyclin E-CDK2 in murine fibroblasts causes phosphorylation of the CDK inhibitor p27Kip1 on T187, and that cyclin E-CDK2 can directly phosphorylate p27 T187 in vitro. We further show that cyclin E-CDK2-dependent phosphorylation of p27 results in elimination of p27 from the cell, allowing cells to transit from G1 to S phase. Moreover, mutation of T187 in p27 to alanine creates a p27 protein that causes a G1 block resistant to cyclin E and whose level of expression is not modulated by cyclin E. A kinetic analysis of the interaction between p27 and cyclin E-CDK2 explains how p27 can be regulated by the same enzyme it targets for inhibition. We show that p27 interacts with cyclin E-CDK2 in at least two distinct ways: one resulting in p27 phosphorylation and release, the other in tight binding and cyclin E-CDK2 inhibition. The binding of ATP to the CDK governs which state predominates. At low ATP (< 50 microM) p27 is primarily a CDK inhibitor, but at ATP concentrations approaching physiological levels (> 1 mM) p27 is more likely to be a substrate. Thus, we have identified p27 as a biologically relevant cyclin E-CDK2 substrate, demonstrated the physiological consequences of p27 phosphorylation, and developed a kinetic model to explain how p27 can be both an inhibitor and a substrate of cyclin E-CDK2.
细胞周期蛋白依赖性激酶(CDK)抑制剂被认为通过负向调节细胞周期蛋白-CDK复合物来阻止细胞增殖。我们提出相反的情况也成立,即哺乳动物细胞中的细胞周期蛋白-CDK复合物可通过直接下调CDK抑制剂来促进细胞周期进程。我们发现,在鼠成纤维细胞中细胞周期蛋白E-CDK2的表达会导致CDK抑制剂p27Kip1的苏氨酸187位点发生磷酸化,并且细胞周期蛋白E-CDK2在体外可直接使p27的苏氨酸187位点磷酸化。我们进一步表明,p27的细胞周期蛋白E-CDK2依赖性磷酸化导致p27从细胞中消除,使细胞从G1期进入S期。此外,将p27中苏氨酸187位点突变为丙氨酸会产生一种p27蛋白,该蛋白会导致细胞周期停滞在G1期,对细胞周期蛋白E具有抗性,且其表达水平不受细胞周期蛋白E的调节。对p27与细胞周期蛋白E-CDK2之间相互作用的动力学分析解释了p27如何被其靶向抑制的同一种酶所调节。我们发现p27与细胞周期蛋白E-CDK2至少以两种不同方式相互作用:一种导致p27磷酸化并释放,另一种导致紧密结合并抑制细胞周期蛋白E-CDK2。ATP与CDK的结合决定了哪种状态占主导。在低ATP浓度(<50微摩尔)下,p27主要是一种CDK抑制剂,但在接近生理水平的ATP浓度(>1毫摩尔)下,p27更有可能成为底物。因此,我们已将p27鉴定为一种具有生物学相关性的细胞周期蛋白E-CDK2底物,证明了p27磷酸化的生理后果,并建立了一个动力学模型来解释p27如何既是细胞周期蛋白E-CDK2的抑制剂又是其底物。