Suppr超能文献

Using secondary structure predictions and site-directed mutagenesis to identify and probe the role of potential active site motifs in the RT6 mono(ADP-ribosyl)transferases.

作者信息

Bredehorst K, Wursthorn K, Thiele H G, Haag F, Koch-Nolte F

机构信息

Department of Immunology, University Hospital, Hamburg, Germany.

出版信息

Adv Exp Med Biol. 1997;419:185-9. doi: 10.1007/978-1-4419-8632-0_23.

Abstract

The RT6 T cell mono(ADP-ribosyl)transferases are expressed as GPI-anchored membrane proteins by mature T lymphocytes. We performed secondary structure prediction analyses of RT6 with a profile based neural network system based on multiple alignments of RT6 with other vertebrate mono(ADP-ribosyl)transferases (mADPRTs). The results reveal a linear order of predicted beta sheets/alpha helix in RT6 that are quite similar to those in the catalytic subunit of the four known crystal structures of mono-ADP-ribosylating bacterial toxins. Recognizable amino acid similarities occur throughout the region of predicted structural homology to the bacterial toxins. Three residues which have been shown to be important for catalysis in bacterial toxins (e.g. R9, S52 and E129 in pertussis toxin) occur in a similar context also in RT6 (R126, S147 and E189). We have mutated these residues in RT6 by site-directed mutagenesis. The RT6 mutants exhibit remarkably similar alterations in enzymatic phenotype as those reported for mutations of the proposed analagous residues in bacterial toxins. These results support the hypothesis that eu- and procaryotic mADPRTs share a common fold and have a common ancestry.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验