Suppr超能文献

转录重新起始率:TATA 框的特殊作用。

Transcription reinitiation rate: a special role for the TATA box.

作者信息

Yean D, Gralla J

机构信息

Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90095-1569, USA.

出版信息

Mol Cell Biol. 1997 Jul;17(7):3809-16. doi: 10.1128/MCB.17.7.3809.

Abstract

Promoters need to specify both the timing of transcriptional induction and the amount of transcript synthesized. In order to explore each of these effects separately, in vitro assays for the level of active preinitiation complex formation and for the rate of continuous RNA production were done. The effects were found to be influenced differently by different promoter elements. A consensus TATA element had a very strong effect on the rate of continuous RNA production, whereas two types of activators were important primarily in forming active transcription preinitiation complexes. Consensus TATA promoters exhibited high rates of continuous transcription; they assembled active preinitiation transcription complexes slowly but then produced transcripts continuously at an approximately fivefold-higher rate. Initiator-containing TATA-less promoters produced continuous transcripts slowly. Point mutations in the TATA element led to lower levels of transcription by reducing the number of preinitiation complexes and amplifying this reduction by lowering the apparent reinitiation rate. The results allow understanding of the sequence diversity of promoter elements in terms of specifying separate controls over the sensitivity of gene induction and over the strength of the induced promoter.

摘要

启动子需要同时确定转录诱导的时间和合成转录本的数量。为了分别探究这些效应,我们针对活性前起始复合物的形成水平和连续RNA产生的速率进行了体外测定。结果发现,不同的启动子元件对这些效应的影响各不相同。共有TATA元件对连续RNA产生的速率有非常强烈的影响,而两类激活因子主要在形成活性转录前起始复合物方面发挥重要作用。共有TATA启动子表现出较高的连续转录速率;它们组装活性前起始转录复合物的速度较慢,但随后以大约五倍的更高速率持续产生转录本。含起始子的无TATA启动子产生连续转录本的速度较慢。TATA元件中的点突变通过减少前起始复合物的数量导致转录水平降低,并通过降低表观重新起始速率放大这种降低。这些结果有助于从对基因诱导敏感性和诱导启动子强度的单独控制方面理解启动子元件的序列多样性。

相似文献

1
Transcription reinitiation rate: a special role for the TATA box.
Mol Cell Biol. 1997 Jul;17(7):3809-16. doi: 10.1128/MCB.17.7.3809.
5
Kinetic analysis of Sp1-mediated transcriptional activation of a TATA-containing promoter.
Biochemistry. 2000 Feb 1;39(4):818-23. doi: 10.1021/bi9912701.
6
Cooperation between core promoter elements influences transcriptional activity in vivo.
Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1955-9. doi: 10.1073/pnas.92.6.1955.

引用本文的文献

1
Comparative cofactor screens show the influence of transactivation domains and core promoters on the mechanisms of transcription.
Nat Genet. 2024 Jun;56(6):1181-1192. doi: 10.1038/s41588-024-01749-z. Epub 2024 May 20.
2
Compatibility rules of human enhancer and promoter sequences.
Nature. 2022 Jul;607(7917):176-184. doi: 10.1038/s41586-022-04877-w. Epub 2022 May 20.
4
Multiple domains in the 50 kDa form of E4F1 regulate promoter-specific repression and E1A trans-activation.
Gene. 2020 Sep 5;754:144882. doi: 10.1016/j.gene.2020.144882. Epub 2020 Jun 11.
5
Promoter-specific dynamics of TATA-binding protein association with the human genome.
Genome Res. 2019 Dec;29(12):1939-1950. doi: 10.1101/gr.254466.119. Epub 2019 Nov 15.
6
Linking Core Promoter Classes to Circadian Transcription.
PLoS Genet. 2016 Aug 9;12(8):e1006231. doi: 10.1371/journal.pgen.1006231. eCollection 2016 Aug.
8
DNA signals at isoform promoters.
Sci Rep. 2016 Jun 29;6:28977. doi: 10.1038/srep28977.
9
Affinity and competition for TBP are molecular determinants of gene expression noise.
Nat Commun. 2016 Feb 2;7:10417. doi: 10.1038/ncomms10417.
10
DTIE, a novel core promoter element that directs start site selection in TATA-less genes.
Nucleic Acids Res. 2016 Feb 18;44(3):1080-94. doi: 10.1093/nar/gkv1032. Epub 2015 Oct 12.

本文引用的文献

1
CIF, an essential cofactor for TFIID-dependent initiator function.
Genes Dev. 1996 Apr 1;10(7):873-86. doi: 10.1101/gad.10.7.873.
2
Transcription activation by GC-boxes: evaluation of kinetic and equilibrium contributions.
Nucleic Acids Res. 1996 Jul 15;24(14):2723-9. doi: 10.1093/nar/24.14.2723.
3
Metazoan rDNA enhancer acts by making more genes transcriptionally active.
J Cell Biol. 1996 Jun;133(5):943-54. doi: 10.1083/jcb.133.5.943.
4
Contacts in context: promoter specificity and macromolecular interactions in transcription.
Cell. 1996 Mar 22;84(6):825-30. doi: 10.1016/s0092-8674(00)81061-2.
5
Transcriptional regulation of the dihydrofolate reductase gene.
Bioessays. 1996 Jan;18(1):55-62. doi: 10.1002/bies.950180111.
7
Facilitated recycling pathway for RNA polymerase III.
Cell. 1996 Jan 26;84(2):245-52. doi: 10.1016/s0092-8674(00)80979-4.
8
Chromatin structure and RNA polymerase II connection: implications for transcription.
Cell. 1996 Jan 26;84(2):179-82. doi: 10.1016/s0092-8674(00)80970-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验