Suppr超能文献

外力作用下受扭转应力DNA的延伸。

Extension of torsionally stressed DNA by external force.

作者信息

Vologodskii A V, Marko J F

机构信息

Department of Chemistry, New York University, New York 10003, USA.

出版信息

Biophys J. 1997 Jul;73(1):123-32. doi: 10.1016/S0006-3495(97)78053-6.

Abstract

Metropolis Monte Carlo simulation was used to study the elasticity of torsionally stressed double-helical DNA. Equilibrium distributions of DNA conformations for different values of linking deficit, external force, and ionic conditions were simulated using the discrete wormlike chain model. Ionic conditions were specified in terms of DNA effective diameter, i.e., hard-core radius of the model chain. The simulations show that entropic elasticity of the double helix depends on how much it is twisted. For low amounts of twisting (less than about one turn per twist persistence length) the force versus extension is nearly the same as in the completely torsionally relaxed case. For more twisting than this, the molecule starts to supercoil, and there is an increase in the force needed to realize a given extension. For sufficiently large amounts of twist, the entire chain is plectonemically supercoiled at low extensions; a finite force must be applied to obtain any extension at all in this regime. The simulation results agree well with the results of recent micromanipulation experiments.

摘要

采用 metropolis 蒙特卡罗模拟方法研究了受扭应力双螺旋 DNA 的弹性。使用离散蠕虫状链模型模拟了不同连接亏缺值、外力和离子条件下 DNA 构象的平衡分布。离子条件根据 DNA 有效直径指定,即模型链的硬核半径。模拟结果表明,双螺旋的熵弹性取决于其扭曲程度。对于少量扭曲(每扭曲持久长度小于约一圈),力与伸长的关系与完全无扭转松弛情况几乎相同。对于超过此量的扭曲,分子开始超螺旋,实现给定伸长所需的力会增加。对于足够大的扭曲量,在低伸长时整个链呈螺旋超螺旋状态;在该状态下必须施加有限的力才能获得任何伸长。模拟结果与最近的微操纵实验结果吻合良好。

相似文献

1
Extension of torsionally stressed DNA by external force.
Biophys J. 1997 Jul;73(1):123-32. doi: 10.1016/S0006-3495(97)78053-6.
2
Monte Carlo implementation of supercoiled double-stranded DNA.
Biophys J. 2000 Apr;78(4):1979-87. doi: 10.1016/S0006-3495(00)76745-2.
3
Comment on "theory of high-force DNA stretching and overstretching".
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):013901; author reply 013902. doi: 10.1103/PhysRevE.70.013901. Epub 2004 Jul 2.
4
Structural transitions in DNA driven by external force and torque.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 1):051903. doi: 10.1103/PhysRevE.63.051903. Epub 2001 Apr 12.
5
The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis.
J Mol Biol. 1997 Mar 28;267(2):299-311. doi: 10.1006/jmbi.1996.0876.
6
Mechanical transition in a highly stretched and torsionally constrained DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):020701. doi: 10.1103/PhysRevE.89.020701. Epub 2014 Feb 27.
7
Conformational response of supercoiled DNA to confinement in a nanochannel.
J Chem Phys. 2008 Oct 28;129(16):165102. doi: 10.1063/1.2992076.
8
Torque and dynamics of linking number relaxation in stretched supercoiled DNA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021926. doi: 10.1103/PhysRevE.76.021926. Epub 2007 Aug 29.

引用本文的文献

1
DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling.
Front Microbiol. 2023 Oct 30;14:1192831. doi: 10.3389/fmicb.2023.1192831. eCollection 2023.
2
Chromatinization modulates topoisomerase II processivity.
Nat Commun. 2023 Oct 27;14(1):6844. doi: 10.1038/s41467-023-42600-z.
3
Chromatinization Modulates Topoisomerase II Processivity.
bioRxiv. 2023 Oct 4:2023.10.03.560726. doi: 10.1101/2023.10.03.560726.
4
DNA fluctuations reveal the size and dynamics of topological domains.
PNAS Nexus. 2022 Nov 22;1(5):pgac268. doi: 10.1093/pnasnexus/pgac268. eCollection 2022 Nov.
5
Genome modeling: From chromatin fibers to genes.
Curr Opin Struct Biol. 2023 Feb;78:102506. doi: 10.1016/j.sbi.2022.102506. Epub 2022 Dec 26.
6
Statistics and topology of fluctuating ribbons.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2122907119. doi: 10.1073/pnas.2122907119. Epub 2022 Aug 2.
8
Theoretical Methods for Studying DNA Structural Transitions under Applied Mechanical Constraints.
Polymers (Basel). 2017 Feb 21;9(2):74. doi: 10.3390/polym9020074.
9
DNA Mechanics and Topology.
Adv Exp Med Biol. 2018;1092:11-39. doi: 10.1007/978-3-319-95294-9_2.
10
The dynamic interplay between DNA topoisomerases and DNA topology.
Biophys Rev. 2016 Nov;8(Suppl 1):101-111. doi: 10.1007/s12551-016-0240-8. Epub 2016 Nov 14.

本文引用的文献

1
Statistical mechanics of supercoiled DNA.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2912-2938. doi: 10.1103/physreve.52.2912.
2
The effect of intrinsic curvature on conformational properties of circular DNA.
Biophys J. 1997 Mar;72(3):1070-9. doi: 10.1016/S0006-3495(97)78757-5.
4
5
DNA: an extensible molecule.
Science. 1996 Feb 9;271(5250):792-4. doi: 10.1126/science.271.5250.792.
6
The elasticity of a single supercoiled DNA molecule.
Science. 1996 Mar 29;271(5257):1835-7. doi: 10.1126/science.271.5257.1835.
7
Probability of DNA knotting and the effective diameter of the DNA double helix.
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5307-11. doi: 10.1073/pnas.90.11.5307.
8
Knotting of a DNA chain during ring closure.
Science. 1993 Apr 23;260(5107):533-6. doi: 10.1126/science.8475384.
9
Monte Carlo analysis of the conformation of DNA catenanes.
J Mol Biol. 1993 Aug 20;232(4):1130-40. doi: 10.1006/jmbi.1993.1465.
10
Relaxation of a single DNA molecule observed by optical microscopy.
Science. 1994 May 6;264(5160):822-6. doi: 10.1126/science.8171336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验