Suppr超能文献

用于局部评估心脏游离胞质腺苷的S-腺苷同型半胱氨酸(SAH)技术的决定因素。

Determinants of the S-adenosylhomocysteine (SAH) technique for the local assessment of cardiac free cytosolic adenosine.

作者信息

Loncar R, Flesche C W, Deussen A

机构信息

Institut für Herz- und Kreislaufphysiologie, Düsseldorf, Germany.

出版信息

J Mol Cell Cardiol. 1997 May;29(5):1289-305. doi: 10.1006/jmcc.1996.0351.

Abstract

The S-adenosylhomocysteine (SAH) technique allows the estimation of the free cytosolic adenosine concentration using the kinetic properties of the enzyme SAH-hydrolase (adenosine+homocysteine reversible SAH+H2O). Besides the cytosolic adenosine concentration, the local SAH signal may also depend on the local homocysteine availability, the continuous production of SAH from S-adenosylmethionine (SAM-->SAH+CH3) and the activity of the enzyme SAH-hydrolase. These variables were studied with high spatial resolution (sample dry mass 25 mg) in left ventricular myocardium from 26 anesthetized open-chest dogs in which heart rate averaged 86 +/- 14 beats/min and mean aortic pressure 96 +/- 17 mmHg. Homocysteine infusion (48 mg/kg i.v.) increased the normal plasma homocysteine concentration from 5.0 +/- 0.8 to 586 +/- 40 microM after 30 min when the average tissue concentration was 94% of the plasma concentration and similar in low and high flow areas (flow range 0.04 to 1.91 ml/min/g). Local SAH content was 1.18 +/- 0.48 nmol/g under control conditions and increased to 4.33 +/- 0.59 nmol/g within 60 min following competitive blockage of the SAH-hydrolase by adenosine dialdehyde (10 mumol/kg i.v.). This increase of the SAH content was slightly more in high than in low-flow areas (P < 0.01). Regional SAH-hydrolase activity (9.0 +/- 0.5 nmol/min/g) was comparable in high and low flow areas. All three variables exhibited an observed variability which was larger than the methodical variability suggesting significant spatial heterogeneity in the myocardium. A regrouping analysis indicated that between four and five samples taken from distant sites should be averaged to obtain a robust estimate of the above metabolic parameters. Reconciling the measurements with a mathematical model of cardiac adenosine metabolism and fitting of the measured SAH tissue levels gave an estimate of 72 pmol/min/g for the mean transmethylation rate. Estimates of the cytosolic adenosine concentration of cardiomyocytes and endothelial cells under control physiological conditions were 24 and 7 microM, respectively. Thus, the present measurements provide a basis for the quantitative assessment of the local cytosolic adenosine concentration in relation to blood flow.

摘要

S-腺苷同型半胱氨酸(SAH)技术可利用SAH水解酶(腺苷+同型半胱氨酸可逆生成SAH+H₂O)的动力学特性来估算游离胞质腺苷浓度。除了胞质腺苷浓度外,局部SAH信号还可能取决于局部同型半胱氨酸的可用性、S-腺苷甲硫氨酸持续生成SAH(SAM→SAH+CH₃)以及SAH水解酶的活性。在26只麻醉开胸犬的左心室心肌中,以高空间分辨率(样本干质量25mg)研究了这些变量,这些犬的平均心率为86±14次/分钟,平均主动脉压为96±17mmHg。输注同型半胱氨酸(48mg/kg静脉注射)30分钟后,正常血浆同型半胱氨酸浓度从5.0±0.8μM增加到586±40μM,此时平均组织浓度为血浆浓度的94%,在低流量和高流量区域(流量范围0.04至1.91ml/min/g)相似。对照条件下局部SAH含量为1.18±0.48nmol/g,在静脉注射腺苷二醛(10μmol/kg)竞争性阻断SAH水解酶后60分钟内增加到4.33±0.59nmol/g。SAH含量的这种增加在高流量区域比低流量区域略多(P<0.01)。高流量和低流量区域的区域SAH水解酶活性(9.0±0.5nmol/min/g)相当。所有这三个变量的观测变异性均大于方法学变异性,表明心肌中存在显著的空间异质性。重新分组分析表明,应将从远处采集的4至5个样本进行平均,以获得上述代谢参数的可靠估计值。将测量结果与心脏腺苷代谢的数学模型进行协调,并对测量的SAH组织水平进行拟合,得出平均转甲基化率估计值为72pmol/min/g。在对照生理条件下,心肌细胞和内皮细胞的胞质腺苷浓度估计分别为24μM和7μM。因此,本测量结果为定量评估与血流相关的局部胞质腺苷浓度提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验