Suppr超能文献

豚鼠心脏中AMP-腺苷代谢循环的快速周转。

Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart.

作者信息

Kroll K, Decking U K, Dreikorn K, Schrader J

机构信息

Center for Bioengineering, University of Washington, Seattle.

出版信息

Circ Res. 1993 Nov;73(5):846-56. doi: 10.1161/01.res.73.5.846.

Abstract

The intracellular flux rate through adenosine kinase (adenosine-->AMP) in the well-oxygenated heart was investigated, and the relation of the AMP-adenosine metabolic cycle (AMP<-->adenosine) to transmethylation (S-adenosylhomocysteine [SAH]-->adenosine) and coronary flow was determined. Adenosine kinase was blocked in isolated guinea pig hearts by infusion of iodotubercidin in the presence of the adenosine deaminase blocker erythro-9-(2-hydroxy-3-nonyl)adenine (5 mumol/L). Iodotubercidin (1 nmol/L to 4 mumol/L) caused graded increases in venous effluent concentrations of adenosine, from 8 +/- 3 to 145 +/- 32 nmol/L (mean +/- SEM, n = 3), and in coronary flow, which increased to maximal levels. Flow increases were completely abolished by adenosine deaminase (5 to 10 U/mL). Interstitial adenosine concentrations, estimated using a mathematical model, increased from 22 nmol/L during control conditions to 420 nmol/L during maximal vasodilation. The possibility that iodotubercidin caused increased venous adenosine by interfering with myocardial energy metabolism was ruled out in separate 31P nuclear magnetic resonance experiments. To estimate total normoxic myocardial production of adenosine (AMP-->adenosine<--SAH), the time course of coronary venous adenosine release was measured during maximal inhibition of adenosine kinase with 30 mumol/L iodotubercidin. Adenosine release increased more than 15-fold over baseline, reaching a new steady-state value of 3.4 +/- 0.3 nmol.min-1 x g-1 (n = 5) after 4 minutes. In parallel experiments, the relative roles of AMP hydrolysis and transmethylation (SAH hydrolysis) were determined, using adenosine dialdehyde (10 mumol/L) to block SAH hydrolase. In these experiments, adenosine release increased to similar levels of 3.4 +/- 0.5 nmol.min-1 x g-1 (n = 6) during inhibition of adenosine deaminase and adenosine kinase. It is concluded that (1) maximal increases in coronary flow are elicited by increases in interstitial adenosine concentration to approximately 400 nmol/L, (2) more than 90% of the adenosine produced in the heart is normally rephosphorylated to AMP without escaping into the venous effluent, (3) AMP hydrolysis is the dominant pathway for cardiac adenosine production under normoxic conditions, and (4) the high rate of adenosine salvage is due to rapid turnover of a metabolic cycle between AMP and adenosine. Rapid cycling may serve to amplify the relative importance of AMP hydrolysis over transmethylation in controlling cytosolic adenosine concentrations.

摘要

研究了在充分氧合的心脏中通过腺苷激酶(腺苷→AMP)的细胞内通量率,并确定了AMP - 腺苷代谢循环(AMP⇆腺苷)与转甲基化(S - 腺苷同型半胱氨酸[SAH]→腺苷)及冠状动脉血流的关系。在腺苷脱氨酶阻滞剂erythro - 9 -(2 - 羟基 - 3 - 壬基)腺嘌呤(5μmol/L)存在的情况下,通过向离体豚鼠心脏输注碘结核菌素阻断腺苷激酶。碘结核菌素(1 nmol/L至4μmol/L)使腺苷的静脉流出浓度呈分级增加,从8±3 nmol/L增至145±32 nmol/L(均值±SEM,n = 3),同时冠状动脉血流增加至最大水平。腺苷脱氨酶(5至10 U/mL)可完全消除血流增加。使用数学模型估算的间质腺苷浓度从对照条件下的22 nmol/L增加至最大血管舒张时的420 nmol/L。在单独的31P核磁共振实验中排除了碘结核菌素通过干扰心肌能量代谢导致静脉腺苷增加的可能性。为了估算正常氧合心肌中腺苷的总生成量(AMP→腺苷⇆SAH),在使用30μmol/L碘结核菌素最大程度抑制腺苷激酶期间,测量冠状动脉静脉腺苷释放的时间进程。腺苷释放比基线增加了15倍以上,4分钟后达到新的稳态值3.4±0.3 nmol·min-1·g-1(n = 5)。在平行实验中,使用腺苷二醛(10μmol/L)阻断SAH水解酶,确定了AMP水解和转甲基化(SAH水解)的相对作用。在这些实验中,在抑制腺苷脱氨酶和腺苷激酶期间,腺苷释放增加到相似水平,为3.4±0.5 nmol·min-1·g-1(n = 6)。得出以下结论:(1)间质腺苷浓度增加至约400 nmol/L可引起冠状动脉血流最大程度增加;(2)心脏中产生的腺苷通常90%以上会重新磷酸化为AMP,而不会逸入静脉流出液;(3)在正常氧合条件下,AMP水解是心脏腺苷生成的主要途径;(4)腺苷的高挽救率归因于AMP和腺苷之间代谢循环的快速周转。快速循环可能有助于在控制胞质腺苷浓度方面扩大AMP水解相对于转甲基化的相对重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验