Suppr超能文献

Second-order motion perception in the peripheral visual field.

作者信息

Zanker J M

机构信息

Department of Psychology, University College London, UK.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 1997 Jul;14(7):1385-92. doi: 10.1364/josaa.14.001385.

Abstract

In motion perception, luminance-defined stimuli (first-order motion) are distinguished from stimuli defined by more complex attributes (second-order motion), because they differ in their processing requirements. For instance, a two-layer model with the output of an array of elementary motion detectors (EMD's) feeding into a second array of EMD's has been proposed to account for seeing the movement of motion-defined objects. The question is raised whether this processing scheme is operating across the whole visual field or whether second-order motion perception is restricted to the fovea. The detection, orientation discrimination, and motion direction discrimination of oblique, vertically moving bars was tested at horizontal eccentricities between 0 degree and 16 degrees. Bars were defined on a dynamic noise background by an area of static dots (drift-balanced motion) or by coherent dot motion either in the direction of the bar motion (Fourier motion) or in the orthogonal direction (theta motion). Coherence thresholds for direction discrimination are severely impaired in the periphery for both types of second-order motion but not for Fourier motion, whereas orientation discrimination and detection marginally decline for all three bar types when the stimuli are presented further out in the periphery. In a control experiment it is shown that this result cannot be due entirely to the changes in spatial scale of the peripheral visual system. The facts that motion-defined objects can be detected in the periphery and that their orientation can be detected, but not their direction of motion, supports the view that the two-layer system suggested for the processing of theta motion is restricted to the central region of the visual field.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验