Suppr超能文献

[电子束计算机断层扫描定量测定左心室心肌灌注]

[Quantitative determination of left ventricular myocardial perfusion with electron beam computerized tomography].

作者信息

Rienmüller R, Baumgartner C, Kern R, Harb S, Aigner R, Fueger G, Weihs W

机构信息

Abteilung für Allgemeine Radiologische Diagnostik, Universität Graz.

出版信息

Herz. 1997 Apr;22(2):63-71. doi: 10.1007/BF03044305.

Abstract

Myocardial perfusion is one of the most important functional parameters of the heart. Presently various indirect methods are used to determine coronary blood flow or myocardial perfusion as inertgas-, thermodilution-, Doppler catheter- and radiopharmacological techniques. Electron-beam-computed-tomographical technology is able to perform CT data acquisition with a very short exposure time of 50 ms. Using this method it is not only possible to determine left ventricular volumes but also to measure myocardial perfusion in ml/100 g/min. The measurement of the left myocardial perfusion is performed using the short axis view. This position is obtained by moving the table 25 degrees to the patient's right and 15 degrees caudally. To determine the position of the left ventricle, a localization scan is obtained in multi-slice-mode using all for target-rings, thus obtaining 8 tomographic levels over 68 mm (each tomographic level having a slice thickness of 7 mm, with an interslice gap of 4 mm between each two adjacent tomographic levels). In this short axis position, using the multi slice flow mode with 3 target-rings and after administration of 50 ml of contrast medium intravenously with a flow of 3 ml/s, 6 tomographic levels are imaged. Each tomographic level is obtained 13 times at 80% of the R-R-interval at each 2 or 3 heart beat (ECG-gated). The left ventricular myocardial contrast enhancement is measured by drawing manually the outline of the left ventricular myocardium using time-density-software of the Imatron workstation. For calculation of the myocardial perfusion the so-called "slope method" is used and the results are expressed as the maximum slope of enhancement of the myocardium divided by the difference of the precontrast and peak CT-value in the left ventricle. The global myocardial perfusion is calculated as a mean of all evaluated tomographic levels. In this study left ventricular volumes as enddiastolic volume endsystolic volume and stroke volume were measured and ejection fraction and cardiac output calculated. The measurements were performed in the log axis view. This view is obtained by moving the table 15 degrees to the patients left in a horizontal position. In this long axis position 6 tomographic levels are imaged using the multi-slice-cine-mode with 3 target-rings after administration of 50 ml of contrast medium intravenously with a flow of 3 ml/s. Each tomographic level is obtained 13 times starting at 0% of the R-R-interval (ECG-triggering). The exposure time is 50 ms with an interscan time delay of 8 ms. In 9 studied patients of whom one had 3 significant coronary artery stenotic lesions (> 50%), 2 patients had each 2 non significant stenotic lesions (< 50%) and 6 revealed nearly normal coronary angiograms. The mean global myocardial perfusion was 70 ml/100 g/min (min.32 and max. 116 ml/100 g/min). This mean value of 70 ml/100 g/min is reflecting 5% of the cardiac output supposing that the mean heart weight of these patients was 300 g. In this study the mean of the left ventricular muscle mass determined by the use of EBCT was 130 g. A comparative evaluation of coronary angiographic findings in these patients with the measured myocardial perfusion values revealed, that is not sufficient to look only at the absolute values of the measured myocardial perfusion. Furthermore it seems to be necessary to interpret these perfusion values with respect to the calculated cardiac output. Additional studies of well defined patients groups are necessary to determine normal values of myocardial perfusion at rest in patients with and without coronary artery disease. This seems to be important as comparative analysis of myocardial scintigraphic and EBCT-studies is difficult because of methodical inherent differences. The results of this study suggest that despite the presence of some beam hardening artifacts it is possible to measure myocardial perfusion using EBCT in patients with suspected coronary artery disease in the

摘要

心肌灌注是心脏最重要的功能参数之一。目前,有多种间接方法用于测定冠状动脉血流量或心肌灌注,如惰性气体法、热稀释法、多普勒导管法和放射性药物技术。电子束计算机断层扫描技术能够在50毫秒的极短曝光时间内进行CT数据采集。使用这种方法,不仅可以测定左心室容积,还能够以毫升/100克/分钟为单位测量心肌灌注。左心肌灌注的测量采用短轴视图。通过将检查床向患者右侧移动25度并向尾侧移动15度来获得该位置。为确定左心室的位置,使用所有四个靶环以多层模式进行定位扫描,从而在68毫米范围内获得8个断层层面(每个断层层面的切片厚度为7毫米,相邻两个断层层面之间的层间距为4毫米)。在这个短轴位置,使用具有3个靶环的多层血流模式,在以3毫升/秒的流速静脉注射50毫升造影剂后,对6个断层层面进行成像。每个断层层面在每个2或3个心跳周期(心电图门控)的R-R间期的80%处采集13次。通过使用Imatron工作站的时间密度软件手动绘制左心室心肌的轮廓来测量左心室心肌对比增强。为计算心肌灌注,使用所谓的“斜率法”,结果表示为心肌增强的最大斜率除以左心室内造影前和峰值CT值的差值。整体心肌灌注通过所有评估的断层层面的平均值来计算。在本研究中,测量了舒张末期容积、收缩末期容积和每搏输出量等左心室容积,并计算了射血分数和心输出量。测量在对数轴视图中进行。通过将检查床在水平位置向患者左侧移动15度来获得该视图。在这个长轴位置,在以3毫升/秒的流速静脉注射50毫升造影剂后,使用具有3个靶环的多层电影模式对6个断层层面进行成像。每个断层层面从R-R间期的0%开始(心电图触发)采集13次。曝光时间为50毫秒,扫描间隔时间延迟为8毫秒。在9名研究患者中,1名患者有3处严重冠状动脉狭窄病变(>50%),2名患者各有2处非严重狭窄病变(<50%),6名患者冠状动脉造影显示几乎正常。整体心肌灌注的平均值为70毫升/100克/分钟(最小值32毫升/100克/分钟,最大值116毫升/100克/分钟)。假设这些患者的平均心脏重量为300克,这个70毫升/100克/分钟的平均值反映了心输出量的5%。在本研究中,使用电子束CT测定的左心室肌肉质量的平均值为130克。对这些患者的冠状动脉造影结果与测量的心肌灌注值进行比较评估发现,仅查看测量的心肌灌注绝对值是不够的。此外,似乎有必要结合计算的心输出量来解释这些灌注值。需要对明确界定的患者群体进行更多研究,以确定有和没有冠状动脉疾病的患者静息时心肌灌注的正常值。这似乎很重要,因为由于方法上的固有差异,心肌闪烁显像和电子束CT研究的比较分析很困难。本研究结果表明,尽管存在一些束硬化伪影,但在疑似冠状动脉疾病的患者中使用电子束CT测量心肌灌注是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验