Jensen D E, Belka G K, Dworkin C
Kimmel Cancer Institute, and Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A.
Biochem Pharmacol. 1997 May 9;53(9):1297-306. doi: 10.1016/s0006-2952(96)00861-1.
N-Nitrosoguanidines are potential carcinogens. However, the toxicity of these agents is attenuated significantly in laboratory rodents by processes that remove the nitroso group to generate the relatively innocuous parent guanidinium compound. The denitrosation of 1,3-dimethyl-2-cyano-1-nitrosoguanidine (CyanoDMNG) mediated by rat hepatocytes in primary culture was investigated. At concentrations < or = 200 microM, applied CyanoDMNG was converted efficiently to 1,3-dimethyl-2-cyanoguanidine (CyanoDMG). In trials using 50 microM CyanoDMNG (5 mL dosing solutions), it was demonstrated that hepatocytes are capable of denitrosating a 40 microM concentration of the applied compound with little change in the total or oxidized glutathione levels. The process was inhibited by coincidently applied ethacrynic acid, a glutathione transferase inhibitor. Reduction of hepatocyte glutathione to 20% of control levels by buthionine sulfoximine pretreatment had little effect on CyanoDMG production; total depletion of cytosolic glutathione by diethyl maleate pretreatment arrested CyanoDMNG processing. Hepatocyte-mediated CyanoDMNG denitrosation did not generate nitrite; nitrate yields were 10% relative to the CyanoDMG produced. The mercuric chloride/azo dye response of cultures lysed at times during 50 microM CyanoDMNG processing indicated intact CyanoDMNG as the only dye-sensitive material present. At applied CyanoDMNG > 100 microM, S-nitrosoglutathione (GSNO) yields were detectable; 4 microM GSNO was generated (concentration in 5 mL lysates) and maintained during 60 min at the 200 microM CyanoDMNG treatment level; this yield decayed if CyanoDMNG was withdrawn. Based on these and previous findings, it is hypothesized that CyanoDMNG is converted to CyanoDMG and GSNO by glutathione transferases and that GSNO is catabolized to eventually regenerate reduced glutathione. The fate of most of the NO moiety released remains to be determined.
N-亚硝基胍是潜在的致癌物。然而,在实验室啮齿动物中,这些物质的毒性会通过去除亚硝基基团以生成相对无害的母体胍化合物的过程而显著减弱。对原代培养的大鼠肝细胞介导的1,3-二甲基-2-氰基-1-亚硝基胍(氰基二甲基亚硝基胍,CyanoDMNG)的脱亚硝化作用进行了研究。在浓度≤200微摩尔时,施加的氰基二甲基亚硝基胍能有效地转化为1,3-二甲基-2-氰基胍(氰基二甲基胍,CyanoDMG)。在使用50微摩尔氰基二甲基亚硝基胍(5毫升给药溶液)的试验中,结果表明肝细胞能够对施加化合物40微摩尔的浓度进行脱亚硝化,而总谷胱甘肽或氧化型谷胱甘肽水平几乎没有变化。该过程受到同时施加的依他尼酸(一种谷胱甘肽转移酶抑制剂)的抑制。用丁硫氨酸亚砜亚胺预处理将肝细胞谷胱甘肽降低至对照水平的20%,对氰基二甲基胍的产生影响不大;用马来酸二乙酯预处理使胞质谷胱甘肽完全耗尽则会阻止氰基二甲基亚硝基胍的转化过程。肝细胞介导的氰基二甲基亚硝基胍脱亚硝化作用不会产生亚硝酸盐;相对于产生的氰基二甲基胍,硝酸盐产量为10%。在50微摩尔氰基二甲基亚硝基胍处理过程中不同时间裂解的培养物的氯化汞/偶氮染料反应表明,完整的氰基二甲基亚硝基胍是唯一对染料敏感的物质。当施加的氰基二甲基亚硝基胍>100微摩尔时,可检测到S-亚硝基谷胱甘肽(GSNO)的产生;生成了4微摩尔GSNO(5毫升裂解物中的浓度),并在200微摩尔氰基二甲基亚硝基胍处理水平下维持60分钟;如果撤去氰基二甲基亚硝基胍,该产量会下降。基于这些以及之前的研究结果,推测氰基二甲基亚硝基胍通过谷胱甘肽转移酶转化为氰基二甲基胍和GSNO,并且GSNO会被分解代谢以最终再生还原型谷胱甘肽。释放的大部分NO基团的去向仍有待确定。