Suppr超能文献

心电图逆问题的区域正则化:基于球面几何的模型研究

Regional regularization of the electrocardiographic inverse problem: a model study using spherical geometry.

作者信息

Oster H S, Rudy Y

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207, USA.

出版信息

IEEE Trans Biomed Eng. 1997 Feb;44(2):188-99. doi: 10.1109/10.552248.

Abstract

This study examines the use of a new regularization scheme, called regional regularization, for solving the electrocardiographic inverse problem. Previous work has shown that different time frames in the cardiac cycle require varying degrees of regularization. This reflects differences in potential magnitudes, gradients, signal-to-noise ratio (SNR), and locations of electrical activity. One might expect, therefore, that a single regularization parameter and a uniform level of regularization may also be insufficient for a single potential map of a single time frame because in one map there are regions of high and low potentials and potential gradients. Regional regularization is a class of methods that subdivides a given potential map into functional "regions" based on the spatial characteristics of the potential ("spatial frequencies"). These individual regions are regularized separately and recombined into a complete map. This paper examines the hypothesis that such regionally regularized maps are more accurate than if all regions were taken together and solved with an averaged level of regularization. In a homogeneous concentric spheres model, Legendre polynomials are used to decompose a torso potential map into a set of submaps, each with a different degree of spatial variation. The original torso map is contaminated with data noise, or geometrical error or both, and regional regularization improves the epicardial potential reconstruction by up to 25% [relative error (RE)]. Regional regularization also improves the reconstructed location of peaks. A practical goal is to extend the application of this method to the realistic torso geometry, but because Legendre decomposition is limited to geometries with spherical symmetry, other methods of map decomposition must be found. Singular value decomposition (SVD) is used to decompose the maps into component parts. Its individual submaps also have different levels of spatial variation; moreover, it is generalizable to any vector, does not require spherical symmetry, and is extremely efficient numerically. Using SVD decomposition for regional regularization, significant improvement was achieved in the map quality in the presence of data noise.

摘要

本研究考察了一种名为区域正则化的新正则化方案在解决心电图逆问题中的应用。先前的研究表明,心动周期中的不同时间帧需要不同程度的正则化。这反映了电位大小、梯度、信噪比(SNR)以及电活动位置的差异。因此,人们可能会预期,对于单个时间帧的单个电位图,单个正则化参数和统一的正则化水平可能也不够,因为在一个图中存在高电位和低电位以及电位梯度的区域。区域正则化是一类基于电位的空间特征(“空间频率”)将给定电位图细分为功能“区域”的方法。这些单个区域分别进行正则化,然后重新组合成一个完整的图。本文检验了这样一个假设,即这种区域正则化的图比将所有区域合并并用平均正则化水平求解时更准确。在均匀同心球模型中,勒让德多项式用于将躯干电位图分解为一组子图,每个子图具有不同程度的空间变化。原始躯干图受到数据噪声或几何误差或两者的影响,区域正则化将心外膜电位重建的相对误差(RE)提高了多达25%。区域正则化还改善了峰值的重建位置。一个实际目标是将该方法的应用扩展到实际的躯干几何形状,但由于勒让德分解仅限于具有球对称性的几何形状,必须找到其他的图分解方法。奇异值分解(SVD)用于将图分解为组成部分。其各个子图也具有不同程度的空间变化;此外,它可推广到任何向量,不需要球对称性,并且在数值上极其高效。使用SVD分解进行区域正则化,在存在数据噪声的情况下,图的质量有了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验