Suppr超能文献

一种基于格拉斯哥昏迷量表的新型蛛网膜下腔出血分级系统:与亨特和赫斯分级及世界神经外科医师联盟分级在临床系列中的比较。

A new subarachnoid hemorrhage grading system based on the Glasgow Coma Scale: a comparison with the Hunt and Hess and World Federation of Neurological Surgeons Scales in a clinical series.

作者信息

Oshiro E M, Walter K A, Piantadosi S, Witham T F, Tamargo R J

机构信息

Department of Neurosurgery, Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland, USA.

出版信息

Neurosurgery. 1997 Jul;41(1):140-7; discussion 147-8. doi: 10.1097/00006123-199707000-00029.

Abstract

OBJECTIVE

Although the Hunt and Hess Scale (HHS) and World Federation of Neurological Surgeons Scale (WFNSS) are the most widely used subarachnoid hemorrhage (SAH) grading systems, neither system has achieved universal acceptance. We propose a simplified grading system based entirely on the Glasgow Coma Scale (GCS), which compresses the 15-point GCS into five grades that are comparable with those of the HHS and WFNSS. We refer to this system as the GCS grading system and present a direct comparison with the HHS and WFNSS for predictive value regarding patient outcome and interrater reliability.

METHODS

We reviewed 291 consecutive patients with aneurysms treated at our institution between January 1992 and January 1996 and compared the admission grades from the GCS, WFNSS, and HHS with outcome measures at discharge from hospitalization. The Glasgow Outcome score was used as the major outcome measure to evaluate the predictive value of the three scales. Mortality and length of stay (LOS) were also evaluated as outcome measures. The predictive value of each scale was tested with an ordinal logistic regression model for Glasgow Outcome score, a logistic regression model for mortality data, and a linear regression model for LOS.

RESULTS

Using the logistic regression model, the GCS was the best predictor of discharge Glasgow Outcome score, with an odds ratio of 2.585 (P = 0.0001), compared with 2.311 (P = 0.0001) for the WFNSS and 2.262 (P = 0.0001) for the HHS. Using mortality data in the logistic model, the HHS was the best predictor, with an odds ratio of 3.391 (P = 0.0001), compared with 2.859 (P = 0.0001) for the GCS and 2.560 (P = 0.0001) for the WFNSS. Each of the three scales had a high predictive value for LOS, using a linear model. We discuss, however, the problematic nature of LOS as an outcome measure for SAH. Interrater reliability for each scale was evaluated using kappa statistics, based on 15 additional patients evaluated prospectively, and showed that the GCS grade also had the greatest interrater reliability, with a kappa of 0.46 (P = 0.0002), compared with 0.41 (P = 0.0005) for the HHS and 0.27 (P = 0.027) for the WFNSS.

CONCLUSION

We conclude that the GCS grade has equal or greater predictive value regarding outcome after SAH than do the currently used grading systems and that it has greater reproducibility across observers. Broader familiarity with the GCS among medical and paramedical personnel may further enhance the usefulness of the GCS grade over the HHS and WFNSS in providing a standardized, universally accepted grading system for SAH.

摘要

目的

尽管Hunt和Hess量表(HHS)以及世界神经外科医师联合会量表(WFNSS)是最广泛使用的蛛网膜下腔出血(SAH)分级系统,但这两个系统都未获得普遍认可。我们提出一种完全基于格拉斯哥昏迷量表(GCS)的简化分级系统,该系统将15分的GCS压缩为五个等级,可与HHS和WFNSS的等级相比较。我们将此系统称为GCS分级系统,并与HHS和WFNSS就患者预后的预测价值和评分者间信度进行直接比较。

方法

我们回顾了1992年1月至1996年1月在我们机构接受治疗的291例连续动脉瘤患者,并将入院时GCS、WFNSS和HHS的分级与出院时的预后指标进行比较。格拉斯哥预后评分用作主要预后指标来评估这三个量表的预测价值。死亡率和住院时间(LOS)也作为预后指标进行评估。每个量表的预测价值通过用于格拉斯哥预后评分的有序逻辑回归模型、用于死亡率数据的逻辑回归模型以及用于LOS的线性回归模型进行测试。

结果

使用逻辑回归模型,GCS是出院时格拉斯哥预后评分的最佳预测指标,优势比为2.585(P = 0.0001),相比之下,WFNSS的优势比为2.311(P = 0.0001),HHS的优势比为2.262(P = 0.0001)。在逻辑模型中使用死亡率数据时,HHS是最佳预测指标,优势比为3.391(P = 0.0001),相比之下,GCS的优势比为2.859(P = 0.0001),WFNSS的优势比为2.560(P = 0.0001)。使用线性模型时,这三个量表对LOS均具有较高的预测价值。然而,我们讨论了LOS作为SAH预后指标的问题性质。基于另外15例前瞻性评估的患者,使用kappa统计量评估每个量表的评分者间信度,结果显示GCS分级的评分者间信度也最高,kappa值为0.46(P = 0.0002),相比之下,HHS的kappa值为0.41(P = 0.0005),WFNSS的kappa值为0.27(P = 0.027)。

结论

我们得出结论,GCS分级在SAH后的预后预测价值与目前使用的分级系统相当或更高,并且在不同观察者之间具有更高的可重复性。医疗和辅助医疗人员对GCS更广泛的熟悉可能会进一步提高GCS分级相对于HHS和WFNSS在为SAH提供标准化、普遍接受的分级系统方面的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验