Chang F C, Swenson R P
Department of Biochemistry and Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA.
Biochemistry. 1997 Jul 22;36(29):9013-21. doi: 10.1021/bi970783+.
Flavodoxin from Desulfovibrio vulgaris is a low molecular weight (15 000 Da) acidic flavoprotein that contains a single flavin mononucleotide (FMN) cofactor. A distinguishing feature of the flavodoxin family is the exceptionally low midpoint potential of the semiquinone/hydroquinone couple. Tyrosine-98, which flanks the outer or si face of the FMN, plays an important role in establishing the oxidation-reduction properties of the bound cofactor as demonstrated by the substitution of a number of amino acids at this position [Swenson, R. P., & Krey, G. D. (1994) Biochemistry 33, 8505-8514]. The midpoint potential for the semiquinone/hydroquinone couple increases substantially when basic residues are introduced at this position. The pH dependency in the Y98H mutant is consistent with a redox-linked ionization model in which the favorable electrostatic coupling between the imidazolium cation and the flavin hydroquinone anion is responsible for the higher potential. Such a model predicts an increase in the pKa of 1.5 units for His98 upon complete reduction of the FMN. In this study, proton nuclear magnetic resonance spectroscopy was used to directly determine the intrinsic pKa of His98 as a function of the redox state of the cofactor in this flavodoxin. Values for the pKa of His98 in the oxidized and fully reduced flavodoxin are 7.02 +/- 0.08 and 8.43 +/- 0.11, respectively, an increase in the pKa by 1.41 units, which conforms with the previous prediction. These results provide direct experimental proof of the redox-linked ionization of this residue and provides further evidence of the crucial role of electrostatic interactions, in this case, in the stabilization of the flavin hydroquinone anion. This phenomenon may represent a general mechanism in the modulation of the reduction potential of the flavin cofactor within flavoenzymes in which ionizable groups such as histidine in the active center change ionization states during the catalytic cycle.
来自普通脱硫弧菌的黄素氧还蛋白是一种低分子量(15000道尔顿)的酸性黄素蛋白,含有单个黄素单核苷酸(FMN)辅因子。黄素氧还蛋白家族的一个显著特征是半醌/氢醌偶联的中点电位异常低。位于FMN外表面或si面两侧的酪氨酸-98在确定结合辅因子的氧化还原性质方面起着重要作用,这一点已通过在该位置替换多个氨基酸得到证明[斯文森,R.P.,&克雷,G.D.(1994年)《生物化学》33卷,8505 - 8514页]。当在该位置引入碱性残基时,半醌/氢醌偶联的中点电位会大幅增加。Y98H突变体中的pH依赖性与氧化还原相关的电离模型一致,在该模型中,咪唑阳离子与黄素氢醌阴离子之间有利的静电偶联导致了更高的电位。这样一个模型预测,FMN完全还原时,His98的pKa会增加1.5个单位。在本研究中,利用质子核磁共振光谱直接测定了该黄素氧还蛋白中His98的固有pKa作为辅因子氧化还原状态的函数。氧化型和完全还原型黄素氧还蛋白中His98的pKa值分别为7.02±0.08和8.43±0.11,pKa增加了1.41个单位,这与先前的预测相符。这些结果为该残基的氧化还原相关电离提供了直接的实验证据,并进一步证明了静电相互作用在这种情况下对黄素氢醌阴离子稳定化的关键作用。这种现象可能代表了黄素酶中黄素辅因子还原电位调节的一种普遍机制,即活性中心中的可电离基团如组氨酸在催化循环中会改变电离状态。