Watanabe M, Wang A, Sheng J, Gombart A F, Ayata M, Ueda S, Hirano A, Wong T C
Department of Microbiology, University of Washington School of Medicine, Seattle 98195, USA.
J Neurovirol. 1995 Jun;1(2):177-88. doi: 10.3109/13550289509113964.
We compared the intracellular processing of the fusion (F) glycoproteins of an acute measles virus (MV) Nagahata strain and its relative Biken strain that caused subacute sclerosing panencephalitis (SSPE). Nagahata strain synthesizes a precursor F0 which acquires three asparagine (N)-linked oligosaccharide chains sequentially in 1 h. One oligosaccharide chain on the partially glycosylated F0 is less accessible to endo-beta-N-acetylglucosaminidase H (endo-H) but becomes accessible as the protein becomes fully glycosylated, suggesting a protein conformational change. Biken strain SSPE virus synthesizes a similarly glycosylated F0. However, one oligosaccharide chain on the Biken F0 remains less accessible to endo-H even after the protein is fully glycosylated. The Nagahata F0 is cleaved into the F1 and F2 subunits with a half life of 1 h. The Biken F0 is cleaved with a half life of 4 h. We cloned the F genes of Nagahata and Biken strains and showed by transfection that the defect causing delayed cleavage of F0 resides in the Biken F gene. Sequence analysis predicts a mutation in the cleavage recognition sequence, a truncated carboxyl-terminus, and multiple mutations in F1 of the Biken F protein. Expression of chimeric F genes showed the mutated cleavage recognition sequence and the carboxyl-terminal truncation do not delay cleavage of F0. Instead, delayed F0 cleavage is due to multiple mutations in the extracellular domain of F1, and four amino acid substitutions near the transmembrane region impair endo-H access to the oligosaccharide chain. These results provide detailed information on the normal maturation process of the F protein of MV and additional clues to the mechanisms of MV persistence in the CNS.
我们比较了急性麻疹病毒(MV)长畑株及其导致亚急性硬化性全脑炎(SSPE)的相关比肯株融合(F)糖蛋白的细胞内加工过程。长畑株合成前体F0,其在1小时内依次获得三条天冬酰胺(N)连接的寡糖链。部分糖基化的F0上的一条寡糖链对内切β-N-乙酰葡糖胺糖苷酶H(内切H)的可及性较低,但随着蛋白质完全糖基化,该寡糖链变得可及,这表明蛋白质构象发生了变化。比肯株SSPE病毒合成了类似糖基化的F0。然而,即使在蛋白质完全糖基化后,比肯F0上的一条寡糖链对内切H的可及性仍然较低。长畑F0以1小时的半衰期裂解为F1和F2亚基。比肯F0以4小时的半衰期裂解。我们克隆了长畑株和比肯株的F基因,并通过转染表明导致F0裂解延迟的缺陷存在于比肯F基因中。序列分析预测比肯F蛋白的裂解识别序列发生突变、羧基末端截短以及F1中有多个突变。嵌合F基因的表达表明,突变的裂解识别序列和羧基末端截短不会延迟F0的裂解。相反,F0裂解延迟是由于F1细胞外结构域中的多个突变,并且跨膜区域附近的四个氨基酸取代损害了内切H对寡糖链的可及性。这些结果提供了关于MV的F蛋白正常成熟过程的详细信息,以及MV在中枢神经系统中持续存在机制的更多线索。