Suppr超能文献

利用含变量误差的泊松回归对日本一项多中心研究的死亡率数据进行建模。

Modelling of mortality data from a multi-centre study in Japan by means of Poisson regression with error in variables.

作者信息

Jordan P, Brubacher D, Tsugane S, Tsubono Y, Gey K F, Moser U

机构信息

Department of Vitamin Research, Hoffmann-La Roche Ltd., Basel, Switzerland.

出版信息

Int J Epidemiol. 1997 Jun;26(3):501-7. doi: 10.1093/ije/26.3.501.

Abstract

BACKGROUND

Death rates of particular categories in epidemiological studies are often based on a small number of occurrences which can be well described by a Poisson distribution.

METHOD

We applied this model for the analysis of a multi-centre study in five Japanese counties where the death rates of stomach cancer (ICD-9 code 151) in four age groups are known. In our example some covariates of the cases (e.g. plasma lycopene levels) are unknown values and are estimated from a randomly chosen collective. Therefore these values are subject to a sampling error. The inclusion of errors in variables (e-i-v) into the statistical model can adequately describe such a situation. The model is estimated in a Bayesian framework by means of resampling techniques.

RESULTS

Based on the posterior distribution of the parameters the relative risk of stomach cancer is 0.46 (95% confidence interval: 0.23-0.79) comparing the maximum of the population medians of lycopene with the minimum. The estimated overdispersion is close to zero indicating only minor interference with other possible explanatory variables. In addition, we show that inclusion of e-i-v can give more accurate estimates of the parameters even from small sample sizes.

CONCLUSIONS

Appropriate statistical methods allow the accurate estimation of relative risks from small sample sizes and from low number of cases. Lycopene plasma levels are good predictors for stomach cancer.

摘要

背景

流行病学研究中特定类别的死亡率通常基于少量事件,这些事件可用泊松分布很好地描述。

方法

我们将此模型应用于对日本五个县的一项多中心研究的分析,其中四个年龄组的胃癌(国际疾病分类第九版代码151)死亡率是已知的。在我们的例子中,病例的一些协变量(如血浆番茄红素水平)是未知值,通过从随机选择的总体中估计得到。因此,这些值存在抽样误差。将变量误差纳入统计模型可以充分描述这种情况。该模型在贝叶斯框架下通过重采样技术进行估计。

结果

根据参数的后验分布,将番茄红素总体中位数的最大值与最小值进行比较,胃癌的相对风险为0.46(95%置信区间:0.23 - 0.79)。估计的过度分散接近零,表明对其他可能的解释变量只有轻微干扰。此外,我们表明纳入变量误差即使从小样本量也能给出更准确的参数估计。

结论

适当的统计方法允许从小样本量和少量病例中准确估计相对风险。血浆番茄红素水平是胃癌的良好预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验