Suppr超能文献

Carotid body dopamine content and release by short-term hypoxia: effect of haloperidol and alpha methyl paratyrosine.

作者信息

Basson H, Bairam A, Cottet-Emard J M, Pequignot J M, Marchal F

机构信息

Laboratoire de Physiologie, Faculté de Médecine, Université de Nancy I, Vandoeuvre-lès-Nancy, France.

出版信息

Arch Physiol Biochem. 1997 Feb;105(1):3-9. doi: 10.1076/apab.105.1.3.13145.

Abstract

Dopamine (DA) is thought to modulate the transduction of the hypoxic stimulus by the glomus cell in the carotid body (CB). The hypothesis tested here is that presynaptic DA D2 receptors (D2's) located on the type 1 cell function as autoreceptors to control DA release and/or synthesis. The aim of the study was to compare the effects of blocking D2's with haloperidol and DA synthesis with alpha methyl paratyrosine (AMPT) on the in vitro carotid body DA response to hypoxia. 54 CB's sampled from adult rabbits were incubated for one hour in a surviving medium bubbled with either 100% O2 or 8% O2 Sixteen CB's served as control (100% O2: n = 8, 8% O2: n = 8), 18 (100% O2: n = 8, 8% O2: n = 10) were sampled from rabbits pretreated with AMPT and 20 (100% O2: n = 12, 8% O2: n = 8) were incubated with micromolar concentrations of haloperidol. At the end of exposure. DA contained in the carotid body (DACB) and released in the surviving medium (DAr) were measured by HPLC. In 100% O2 DACB was not different between either AMPT or haloperidol and control, but DAr was significantly higher in the haloperidol group compared with control (mean +/- SE: 26.6 +/- 7.4 versus 7.6 +/- 2.0 pmol/h, P < 0.02). In 8% O2, control DACB (576 +/- 133 pmol/CB) was significantly higher than AMPT or haloperidol (respectively 228 +/- 29.6 and 246 +/- 49.9 pmol/CB, P < 0.01) and control DAr (234 +/- 72.3 pmol/h) was also significantly higher than AMPT or haloperidol (respectively 28.8 +/- 5.2 and 40.6 +/- 11.4 pmol/h, P < 0.01). Finally, DAr was significantly larger in 8% O2 than in 100% O2 in control and AMPT groups (P < 0.01), but not in the haloperidol group. The increase in DAr by haloperidol in the resting CB is consistent with the blockade of D2's regulating DA release. The decreased DAr in 8% O2 after AMPT suggests that increased DA synthesis contributes to maintain DA secretion by the type I cell exposed to short term hypoxia. The lack of difference in DAr between 8% O2 and 100% O2 after haloperidol probably reflects non specific--i.e., D2 independent--effect of micromolar concentration of haloperidol on DA synthesis and/or sodium-calcium exchangers during hypoxia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验