Suppr超能文献

Delayed neuronal death following perinatal asphyxia in rat.

作者信息

Dell'Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M

机构信息

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

出版信息

Exp Brain Res. 1997 Jun;115(1):105-15. doi: 10.1007/pl00005670.

Abstract

The consequences of perinatal asphyxia on the rat brain were studied 80 min to 8 days after birth with hematoxylin-eosin and in situ DNA double-strand-breaks labeling histochemistry. Asphyxia was induced by immersing fetus-containing uterus horns, removed from ready-to-deliver Sprague-Dawley rats, in a water bath at 37 degrees C for various time periods (0-22 min). Spontaneous- and cesarean-delivered pups were used as controls. Perinatal asphyxia led to a decrease in the rate of survival, depending upon the length of the insult. No gross morphological changes could be seen in the brain of either control or asphyctic pups at any of the studied time points after delivery. However, in all groups, nuclear chromatin fragmentation, corresponding to in situ detection of DNA fragmentation, was observed at different stages. Nuclear fragmentation in control pups showed a specific distribution that appeared to be related to brain maturation, thus indicating programmed cell death. A progressive and delayed increase in nuclear fragmentation was found in asphyctic pups, which was dependent upon the length of the perinatal insult. The most evident effect was seen in frontal cortex, striatum, and cerebellum at postnatal day 8, although changes were also found in ventral-posterior thalamus, at days 1 and 2. Thus, nuclear chromatin fragmentation in asphyctic pups indicates a delayed post-asphyctic neuronal death. The absence of signs of inflammation or necrosis suggests that delayed neuronal cell death following perinatal asphyxia is an active, apoptosis-like phenomenon.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验