Suppr超能文献

Sequence heterogeneity of heron hepatitis B virus genomes determined by full-length DNA amplification and direct sequencing reveals novel and unique features.

作者信息

Netter H J, Chassot S, Chang S F, Cova L, Will H

机构信息

Heinrich-Pette-Institut für experimentelle Virologie und Immunologie, Universität Hamburg, Germany.

出版信息

J Gen Virol. 1997 Jul;78 ( Pt 7):1707-18. doi: 10.1099/0022-1317-78-7-1707.

Abstract

So far, only a single heron hepatitis B virus genome (HHBV-4) has been cloned and sequenced. Therefore, neither the significance of its sequence divergence from other avian hepadnaviruses nor the sequence variability of HHBV genomes in general are known. Here we have analysed the sequence heterogeneity of HHBV genome populations in several sera from naturally infected herons. A highly sensitive PCR method for full-length HHBV genome amplification was established which allowed direct sequencing of entire HHBV populations without prior cloning. Sequences of HHBV genomes from four sera were thus obtained which differed from those of HHBV-4 by up to 7%. Some of the divergent nucleotides and the corresponding amino acids of the predicted viral proteins were conserved in all four new HHBV isolates and varied only in HHBV-4. This indicates that the HHBV-4 genome is not in all aspects representative of this class of viruses. Interestingly, a highly conserved ORF upstream of the C-gene present in a position analogous to that of the mammalian hepadnavirus X-gene became apparent in all HHBV genomes. In contrast to the duck hepadnaviruses, the small (sAg-S) instead of the largest (sAg-L) envelope protein of all HHBVs has a myristylation site. These data confirm the significant sequence divergence of HHBV from other avian hepadnaviruses. Moreover, they show that HHBV has low sequence variability and indicate two new and unique features not evident in other avihepadnaviruses: an additional, highly conserved gene and potential myristylation of the sAg-S instead of the sAg-L envelope protein.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验