Bakker H, Van Tetering A, Agterberg M, Smit A B, Van den Eijnden D H, Van Die I
Department of Medical Chemistry, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands.
J Biol Chem. 1997 Jul 25;272(30):18580-5. doi: 10.1074/jbc.272.30.18580.
Lymnaea stagnalis UDP-GlcNAc:GlcNAcbeta-R beta1-->4-N-acetylglucosaminyltransferase (beta4-GlcNAcT) is an enzyme with structural similarity to mammalian UDP-Gal:GlcNAcbeta-R beta1-->4-galactosyltransferase (beta4-GalT). Here, we report that also the exon organization of the genes encoding these enzymes is very similar. The beta4-GlcNAcT gene (12.5 kilobase pairs, spanning 10 exons) contains four exons, encompassing sequences that are absent in the beta4-GalT gene. Two of these exons (exons 7 and 8) show a high sequence similarity to part of the preceding exon (exon 6), suggesting that they have originated by exon duplication. The exon in the beta4-GalT gene, corresponding to beta4-GlcNAcT exon 6, encodes a region that has been proposed to be involved in the binding of UDP-Gal. The question therefore arose, whether the repeating sequences encoded by exon 7 and 8 of the beta4-GlcNAcT gene would determine the specificity of the enzyme for UDP-GlcNAc, or for the less preferred UDP-GalNAc. It was found that deletion of only the sequence encoded by exon 8 resulted in a completely inactive enzyme. By contrast, deletion of the amino acid residues encoded by exons 7 and 8 resulted in an enzyme with an elevated kinetic efficiency for both UDP-sugar donors, as well as for its acceptor substrates. These results suggest that at least part of the donor and acceptor binding domains of the beta4-GlcNAcT are structurally linked and that the region encompassing the insertion contributes to acceptor recognition as well as to UDP-sugar binding and specificity.