Ito Y, Yamasaki K, Iwahara J, Terada T, Kamiya A, Shirouzu M, Muto Y, Kawai G, Yokoyama S, Laue E D, Wälchli M, Shibata T, Nishimura S, Miyazawa T
Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Japan.
Biochemistry. 1997 Jul 29;36(30):9109-19. doi: 10.1021/bi970296u.
The backbone 1H, 13C, and 15N resonances of the c-Ha-Ras protein [a truncated version consisting of residues 1-171, Ras(1-171)] bound with GMPPNP (a slowly hydrolyzable analogue of GTP) were assigned and compared with those of the GDP-bound Ras(1-171). The backbone amide resonances of amino acid residues 10-13, 21, 31-39, 57-64, and 71 of Ras(1-171).GMPPNP, but not those of Ras(1-171).GDP, were extremely broadened, whereas other residues of Ras(1-171).GMPPNP exhibited amide resonances nearly as sharp as those of Ras(1-171). GDP. The residues exhibiting the extreme broadening, except for residues 21 and 71, are localized in three functional loop regions [loops L1, L2 (switch I), and L4 (switch II)], which are involved in hydrolysis of GTP and interactions with other proteins. From the temperature and magnetic field strength dependencies of the backbone amide resonance intensities, the extreme broadening was ascribed to the exchange at an intermediate rate on the NMR time scale. It was shown that the Ras(1-171) protein bound with GTP or GTPgammaS (another slowly hydrolyzable analogue of GTP) exhibits the same type of broadening. Therefore, it is a characteristic feature of the GTP-bound form of Ras that the L1, L2, and L4 loop regions, but not other regions, are in a rather slow interconversion between two or more stable conformers. This phenomenon, termed a "regional polysterism", of these loop regions may be related with their multifunctionality: the GTP-dependent interactions with several downstream target groups such as the Raf and RalGDS families and also with the GTPase activating protein (GAP) family. In fact, the binding of Ras(1-171).GMPPNP with the Ras-binding domain (residues 51-131) of c-Raf-1 was shown to eliminate the regional polysterism nearly completely. It was indicated, therefore, that each target/regulator selects its appropriate conformer among those presented by the "polysteric" binding interface of Ras. As the downstream target groups exhibit no apparent sequence homology to each other, it is possible that one target group prefers a conformer different from that preferred by another group. The involvement of loop L1 in the regional polysterism might suggest that the negative regulators, GAPs, bind to the polysteric binding interface (loops L2 and L4) of Ras and cooperatively select a conformer suitable for transition of the GTPase catalytic center, involving loops L1 and L4, into the highly active state.
对与鸟苷 5′-(β,γ-亚氨基)三磷酸(GMPPNP,一种 GTP 的缓慢水解类似物)结合的 c-Ha-Ras 蛋白(一种由 1 - 171 位残基组成的截短版本,即 Ras(1 - 171))的主链 1H、13C 和 15N 共振进行了归属,并与结合 GDP 的 Ras(1 - 171)的相应共振进行了比较。Ras(1 - 171).GMPPNP 的氨基酸残基 10 - 13、21、31 - 39、57 - 64 和 71 的主链酰胺共振,而不是 Ras(1 - 171).GDP 的那些共振,极度变宽,而 Ras(1 - 171).GMPPNP 的其他残基表现出的酰胺共振几乎与 Ras(1 - 171).GDP 的一样尖锐。除了残基 21 和 71 外,表现出极度变宽的残基位于三个功能环区域 [环 L1、L2(开关 I)和 L4(开关 II)],这些区域参与 GTP 的水解以及与其他蛋白质的相互作用。根据主链酰胺共振强度对温度和磁场强度的依赖性,这种极度变宽归因于在 NMR 时间尺度上以中间速率进行的交换。结果表明,与 GTP 或鸟苷 5′-(γ-硫代)三磷酸(GTPγS,另一种 GTP 的缓慢水解类似物)结合的 Ras(1 - 171)蛋白表现出相同类型的变宽。因此,Ras 的 GTP 结合形式的一个特征是 L1、L2 和 L4 环区域,而不是其他区域,在两个或更多稳定构象之间进行相当缓慢的相互转化。这些环区域的这种现象,称为“区域多态性”,可能与其多功能性有关:与几个下游靶标基团如 Raf 和 RalGDS 家族以及与 GTP 酶激活蛋白(GAP)家族的 GTP 依赖性相互作用。事实上,已表明 Ras(1 - 171).GMPPNP 与 c-Raf-1 的 Ras 结合结构域(残基 51 - 131)的结合几乎完全消除了区域多态性。因此表明,每个靶标/调节因子在 Ras 的“多态性”结合界面呈现的构象中选择其合适的构象。由于下游靶标基团彼此之间没有明显的序列同源性,一个靶标基团可能更喜欢与另一个基团不同的构象。环 L1 参与区域多态性可能表明,负调节因子 GAP 与 Ras 的多态性结合界面(环 L2 和 L4)结合,并协同选择适合 GTP 酶催化中心(涉及环 L1 和 L4)转变为高活性状态的构象。