Ersdal-Badju E, Lu A, Zuo Y, Picard V, Bock S C
Temple University School of Medicine, Department of Microbiology/Immunology and The Sol Sherry Thrombosis Research Center, Philadelphia, Pennsylvania 19140, USA.
J Biol Chem. 1997 Aug 1;272(31):19393-400. doi: 10.1074/jbc.272.31.19393.
The heparin binding site of the anticoagulant protein antithrombin III (ATIII) has been defined at high resolution by alanine scanning mutagenesis of 17 basic residues previously thought to interact with the cofactor based on chemical modification experiments, analysis of naturally occurring dysfunctional antithrombins, and proximity to helix D. The baculovirus expression system employed for this study produces antithrombin which is highly similar to plasma ATIII in its inhibition of thrombin and factor Xa and which resembles the naturally occurring beta-ATIII isoform in its interactions with high affinity heparin and pentasaccharide (Ersdal-Badju, E., Lu, A., Peng, X., Picard, V., Zendehrouh, P., Turk, B., Björk, I., Olson, S. T., and Bock, S. C. (1995) Biochem. J. 310, 323-330). Relative heparin affinities of basic-to-Ala substitution mutants were determined by NaCl gradient elution from heparin columns. The data show that only a subset of the previously implicated basic residues are critical for binding to heparin. The key heparin binding residues, Lys-11, Arg-13, Arg-24, Arg-47, Lys-125, Arg-129, and Arg-145, line a 50-A long channel on the surface of ATIII. Comparisons of binding residue positions in the structure of P14-inserted ATIII and models of native antithrombin, derived from the structures of native ovalbumin and native antichymotrypsin, suggest that heparin may activate antithrombin by breaking salt bridges that stabilize its native conformation. Specifically, heparin release of intramolecular helix D-sheet B salt bridges may facilitate s123AhDEF movement and generation of an activated species that is conformationally primed for reactive loop uptake by central beta-sheet A and for inhibitory complex formation. In addition to providing a structural explanation for the conformational change observed upon heparin binding to antithrombin III, differences in the affinities of native, heparin-bound, complexed, and cleaved ATIII molecules for heparin can be explained based on the identified binding site and suggest why heparin functions catalytically and is released from antithrombin upon inhibitory complex formation.
抗凝蛋白抗凝血酶III(ATIII)的肝素结合位点已通过对17个碱性残基进行丙氨酸扫描诱变得到高分辨率定义。这些碱性残基先前基于化学修饰实验、对天然存在的功能失调抗凝血酶的分析以及与螺旋D的接近程度,被认为与该辅因子相互作用。本研究采用的杆状病毒表达系统产生的抗凝血酶,在抑制凝血酶和因子Xa方面与血浆ATIII高度相似,在与高亲和力肝素和五糖的相互作用方面与天然存在的β-ATIII同工型相似(Ersdal-Badju, E., Lu, A., Peng, X., Picard, V., Zendehrouh, P., Turk, B., Björk, I., Olson, S. T., and Bock, S. C. (1995) Biochem. J. 310, 323 - 330)。通过从肝素柱上进行NaCl梯度洗脱来测定碱性至丙氨酸取代突变体的相对肝素亲和力。数据表明,先前涉及的碱性残基中只有一部分对于与肝素结合至关重要。关键的肝素结合残基,赖氨酸-11、精氨酸-13、精氨酸-24、精氨酸-47、赖氨酸-125、精氨酸-129和精氨酸-145,排列在ATIII表面一条50埃长的通道上。对插入P14的ATIII结构以及源自天然卵清蛋白和天然抗胰凝乳蛋白酶结构的天然抗凝血酶模型中结合残基位置的比较表明,肝素可能通过破坏稳定其天然构象的盐桥来激活抗凝血酶。具体而言,肝素释放分子内螺旋D-片层B盐桥可能促进s123AhDEF移动并产生一种活化形式,该活化形式在构象上为中央β-片层A摄取反应环以及形成抑制性复合物做好了准备。除了为肝素与抗凝血酶III结合时观察到的构象变化提供结构解释外,天然、肝素结合、复合和裂解的ATIII分子对肝素亲和力的差异也可以基于已确定的结合位点得到解释,并说明了肝素为何具有催化功能以及在形成抑制性复合物时从抗凝血酶上释放出来的原因。