Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia University, New-Delhi-110025, India.
J Biomol Struct Dyn. 2011 Oct;29(2):339-50. doi: 10.1080/07391102.2011.10507389.
Antithrombin III (ATIII) is the main inhibitor of the coagulation proteases like factor Xa and thrombin. Anticoagulant activity of ATIII is increased by several thousand folds when activated by vascular wall heparan sulfate proteoglycans (HSPGs) and pharmaceutical heparins. ATIII isoforms in human plasma, alpha-ATIII and beta-ATIII differ in the amount of glycosylation which is the basis of differences in their heparin binding affinity and function. Crystal structures and site directed mutagenesis studies have mapped the heparin binding site in ATIII, however the hydrogen bond switch and energetics of interaction during the course of heparin dependent conformational change remains largely unclear. An analysis of heparin bound conformational states of ATIII using PEARLS software showed that in heparin bound intermediate state, Arg 47 and Arg 13 residues make hydrogen bonds with heparin but in the activated conformation Lys 11 and Lys 114 have more hydrogen bond interactions. In the protease bound-antithrombin-pentasaccharide complex Lys 114, Pro 12 and Lys 125 form important hydrogen bonding interactions. The results showed that A-helix and N-terminal end residues are more important in the initial interactions but D-helix is more important during the latter stage of conformational activation and during the process of protease inhibition. We carried out the residue wise Accessible Surface Area (ASA) analysis of alpha and beta ATIII native states and the results indicated major differences in burial of residues from Ser 112 to Ser 116 towards the N-terminal end. This region is involved in the P-helix formation on account of heparin binding. A cavity analysis showed a progressively larger cavity formation during activation in the region just adjacent to the heparin binding site towards the C-terminal end. We hypothesize that during the process of conformational change after heparin binding beta form of antithrombin has low energy barrier to form D-helix extension toward N and C-terminal end as compared to alpha isoform.
抗凝血酶 III(ATIII)是凝血蛋白酶如因子 Xa 和凝血酶的主要抑制剂。ATIII 的抗凝活性在被血管壁硫酸乙酰肝素蛋白聚糖(HSPGs)和药物肝素激活时增加数千倍。人血浆中的 ATIII 同工型,α-ATIII 和 β-ATIII,在糖基化程度上有所不同,这是它们肝素结合亲和力和功能差异的基础。晶体结构和定点突变研究已经确定了 ATIII 中的肝素结合位点,但肝素依赖性构象变化过程中的氢键开关和相互作用的能量仍然很大程度上不清楚。使用 PEARLS 软件对肝素结合构象状态的 ATIII 进行分析表明,在肝素结合的中间状态下,Arg47 和 Arg13 残基与肝素形成氢键,但在激活构象下,Lys11 和 Lys114 具有更多的氢键相互作用。在与蛋白酶结合的抗凝血酶-五聚糖复合物中,Lys114、Pro12 和 Lys125 形成重要的氢键相互作用。结果表明,A 螺旋和 N 端末端残基在初始相互作用中更为重要,但 D 螺旋在构象激活的后期和蛋白酶抑制过程中更为重要。我们对α和β ATIII 天然状态的残基进行了可及表面积(ASA)分析,结果表明,从 Ser112 到 Ser116 的残基在 N 端末端的掩埋程度有很大差异。该区域参与肝素结合的 P 螺旋形成。腔分析显示,在肝素结合位点附近的 C 端末端,在激活过程中,腔逐渐形成。我们假设,在肝素结合后构象变化过程中,与α同工型相比,β 形式的抗凝血酶在向 N 和 C 端形成 D 螺旋延伸时具有较低的能量势垒。