Shyng S, Ferrigni T, Nichols C G
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Gen Physiol. 1997 Aug;110(2):141-53. doi: 10.1085/jgp.110.2.141.
KATP channels are a functional complex of sulphonylurea receptor (SUR1, SUR2) and inward rectifier K+ (Kir6.1, Kir6.2) channel subunits. We have studied the role of the putative pore forming subunit (Kir6.2) in regulation of rectification and gating of KATP channels generated by transfection of SUR1 and Kir6.2 cDNAs in COSm6 cells. In the absence of internal polyvalent cations, the current-voltage relationship is sigmoidal. Mg2+ or spermine4+ (spm) each induces a mild inward rectification. Mutation of the asparagine at position 160 in Kir6.2 to aspartate (N160D) or glutamate (N160E) increases the degree of rectification induced by Mg2+ or spermine4+, whereas wild-type rectification is still observed after mutation to other neutral residues (alanine-N160A, glutamine-N160Q). These results are consistent with this residue lining the pore of the channel and contributing to the binding of these cations, as demonstrated for the equivalent site in homomeric ROMK1 (Kir1.1) channels. Since Kir6.2 contains no consensus ATP binding site, whereas SUR1 does, inhibition by ATP has been assumed to depend on interactions with SUR1. However, we found that the [ATP] causing half-maximal inhibition of current (Ki) was affected by mutation of N160. Channels formed from N160D or N160Q mutant subunits had lower apparent sensitivity to ATP (Ki,N160D = 46.1 microM; Ki,N160Q = 62.9 microM) than wild-type, N160E, or N160A channels (Ki = 10.4, 17.7, 6.4 microM, respectively). This might suggest that ATP binding to the channel complex was altered, although examination of channel open probabilities indicates instead that the residue at position 160 alters the ATP-independent open probability, i.e., it controls the free energy of the open state, thereby affecting the "coupling" of ATP binding to channel inhibition. The results can be interpreted in terms of a kinetic scheme whereby the residue at Kir6.2 position 160 controls the rate constants governing transitions to and from the open state, without directly affecting ATP binding or unbinding transitions.
KATP通道是由磺脲类受体(SUR1、SUR2)和内向整流钾离子(Kir6.1、Kir6.2)通道亚基组成的功能性复合物。我们研究了假定的孔形成亚基(Kir6.2)在调节通过将SUR1和Kir6.2 cDNA转染到COS-7细胞中所产生的KATP通道的整流和门控中的作用。在没有内部多价阳离子的情况下,电流-电压关系呈S形。Mg2+或精胺4+(spm)各自诱导轻度内向整流。将Kir6.2中第160位的天冬酰胺突变为天冬氨酸(N160D)或谷氨酸(N160E)会增加由Mg2+或精胺4+诱导的整流程度,而突变为其他中性残基(丙氨酸-N160A、谷氨酰胺-N160Q)后仍观察到野生型整流。这些结果与该残基位于通道孔内并有助于这些阳离子的结合一致,正如在同聚体ROMK1(Kir1.1)通道中的等效位点所证明的那样。由于Kir6.2不包含共有ATP结合位点,而SUR1包含,因此一直认为ATP的抑制作用取决于与SUR1的相互作用。然而,我们发现引起电流半最大抑制的[ATP](Ki)受N160突变的影响。由N160D或N160Q突变亚基形成的通道对ATP的表观敏感性低于野生型、N160E或N160A通道(Ki,N160D = 46.1μM;Ki,N160Q = 62.9μM)(Ki分别为10.4、17.7、6.4μM)。这可能表明ATP与通道复合物的结合发生了改变,尽管对通道开放概率的检查反而表明第160位的残基改变了与ATP无关的开放概率,即它控制开放状态的自由能,从而影响ATP结合与通道抑制的“偶联”。这些结果可以根据动力学方案来解释,即Kir6.2第160位的残基控制着控制进出开放状态转变的速率常数,而不直接影响ATP的结合或解离转变。