Chon K H, Cohen R J, Holstein-Rathlou N H
Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology, Providence, RI 02912, USA.
Ann Biomed Eng. 1997 Jul-Aug;25(4):731-8. doi: 10.1007/BF02684850.
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise.
开发了一种线性和非线性自回归移动平均(ARMA)识别算法,用于对时间序列数据进行建模。该算法使用核函数的拉盖尔展开(LEK)来估计沃尔泰拉 - 维纳核函数。然而,与沃尔泰拉 - 维纳分析通过移动平均模型估计线性和非线性系统动态不同,我们提出了一种基于ARMA模型的方法。所提出的算法本质上与LEK相同,但该算法还扩展到包括输出的过去值。因此,与使用拉盖尔函数相关的所有优点都保留在我们的算法中;但是,通过将算法扩展到线性和非线性ARMA模型,与沃尔泰拉 - 维纳方法相比,可以显著减少拉盖尔函数的数量。这转化为更紧凑的系统表示,并使高阶核函数的生理学解释更容易。此外,仿真结果表明,在某些情况下,所提出的方法在估计系统动态方面比LEK具有更好的性能,并且在存在显著加性测量噪声的情况下仍然有效。