Siebert H C, Kaptein R, Beintema J J, Soedjanaatmadja U M, Wright C S, Rice A, Kleineidam R G, Kruse S, Schauer R, Pouwels P J, Kamerling J P, Gabius H J, Vliegenthart J F
Bijvoet Center for Biomolecular Research, University of Utrecht, The Netherlands.
Glycoconj J. 1997 Jun;14(4):531-4. doi: 10.1023/a:1018572023153.
The side chains of tyrosine, tryptophan and histidine are able to produce CIDNP (Chemically Induced Dynamic Nuclear Polarization) signals after laser irradiation in the presence of a suitable radical pair-generating dye. Elicitation of such a response in proteins implies surface accessibility of the respective groups to the light-absorbing dye. In principle, this technique allows the monitoring of the effect of ligand binding to a receptor and of site-directed mutagenesis on conformational aspects of any protein if CIDNP-reactive amino acids are involved. The application of this method in glycosciences can provide insights into the protein-carbohydrate interaction process, as illustrated in this initial model study for several N-acetyl-glucosamine-binding lectins of increasing structural complexity as well as for a wild type bacterial sialidase and its mutants. Experimentally, the shape and intensity of CIDNP signals are determined in the absence and in the presence of specific glycoligands. When the carbohydrate is bound, CIDNP signals of side chain protons of tyrosine, tryptophan or histidine residues can be broadened and of reduced intensity. This is the case for hevein, pseudo-hevein, the four hevein domains-containing lectin wheat germ agglutinin (WGA) and the cloned B-domain of WGA 1 (domB) representing one hevein domain. This response indicates either a spatial protection by the ligand or a ligand-induced positioning of formerly surface-exposed side chains into the protein's interior part, thereby precluding interaction with the photo-activated dye. Some signals of protons from the reactive side chains can even disappear when the lectin-ligand complexes are monitored. The ligand binding, however, can apparently also induce a conformational change in a related lectin that causes the appearance of a new signal, as seen for Urtica dioica agglutinin (UDA) which consists of two hevein domains. Additionally, the three CIDNP-reactive amino acids are used as sensors for the detection of conformational changes caused by pH variations or by deliberate amino acid exchanges, as determined for the isolectins hevein and pseudo-hevein as well as for the cloned small sialidase of Clostridium perfringens and two of its mutants. Therefore, CIDNP has proven to be an excellent tool for protein-carbohydrate binding studies and can be established in glycosciences as a third biophysical method beside X-ray-crystallography and high-resolution multidimensional NMR studies which provides reliable information of certain structural aspects of carbohydrate-binding proteins in solution.
在存在合适的自由基对生成染料的情况下,酪氨酸、色氨酸和组氨酸的侧链在激光照射后能够产生化学诱导动态核极化(CIDNP)信号。蛋白质中引发这种反应意味着相应基团可被光吸收染料接近。原则上,如果涉及CIDNP反应性氨基酸,该技术可用于监测配体与受体结合以及定点诱变对任何蛋白质构象方面的影响。此方法在糖科学中的应用能够深入了解蛋白质 - 碳水化合物相互作用过程,正如在这项初步模型研究中所示,该研究针对几种结构复杂性不断增加的N - 乙酰葡糖胺结合凝集素以及一种野生型细菌唾液酸酶及其突变体。在实验中,CIDNP信号的形状和强度在不存在和存在特定糖配体的情况下进行测定。当碳水化合物结合时,酪氨酸、色氨酸或组氨酸残基侧链质子的CIDNP信号可能会变宽且强度降低。橡胶素、假橡胶素、含有四个橡胶素结构域的凝集素麦胚凝集素(WGA)以及代表一个橡胶素结构域的WGA 1克隆B结构域(domB)都是这种情况。这种反应表明要么是配体的空间保护作用,要么是配体诱导先前暴露于表面的侧链定位到蛋白质内部,从而阻止与光活化染料相互作用。当监测凝集素 - 配体复合物时,来自反应性侧链的一些质子信号甚至可能消失。然而,配体结合显然也可诱导相关凝集素的构象变化,从而产生新信号,如荨麻凝集素(UDA)所示,它由两个橡胶素结构域组成。此外,这三种CIDNP反应性氨基酸被用作传感器,用于检测由pH变化或有意的氨基酸交换引起的构象变化,这已在橡胶素和假橡胶素等同工凝集素以及产气荚膜梭菌克隆的小唾液酸酶及其两个突变体中得到证实。因此,CIDNP已被证明是蛋白质 - 碳水化合物结合研究的优秀工具,并且可以在糖科学中作为继X射线晶体学和高分辨率多维核磁共振研究之后的第三种生物物理方法确立,它能为溶液中碳水化合物结合蛋白的某些结构方面提供可靠信息。