Suppr超能文献

Morphological and biochemical evidence of muscle hyperplasia following weight-lifting exercise in rats.

作者信息

Tamaki T, Akatsuka A, Tokunaga M, Ishige K, Uchiyama S, Shiraishi T

机构信息

Department of Physiology, Tokai University School of Medicine, Kanagawa, Japan.

出版信息

Am J Physiol. 1997 Jul;273(1 Pt 1):C246-56. doi: 10.1152/ajpcell.1997.273.1.C246.

Abstract

We used a rat model of weight lifting to examine the serial biochemical and morphological changes following muscle fiber hyperplasia during 14 days of exercise. [3H]thymidine and [14C]leucine labeling were used to determine the serial changes in cellular mitotic activity and the level of amino acid uptake and myosin synthesis. Morphological changes were assessed with light and transmission electron microscopy, whereas proliferation of cells was evaluated immunohistochemically with 5-bromo-2'-deoxyuridine (BrdU). The intensity of the exercise and degree of muscle damage were monitored by serum creatine kinase (CK) activity. Damaged fibers were sparsely distributed, and a significant CK leakage was observed 30-60 min after exercise. Anti-BrdU-positive cells were observed in damaged fibers and at the periphery of undamaged fibers. Changes typical of muscle regeneration were observed; however, the formation of new fibers in the interstitial space was also evident. The mitotic activity also changed and reflected the appearance of anti-BrdU-positive cells and activated satellite cells. Amino acid uptake increased during the first week of exercise, probably reflecting muscle hypertrophy and synthesis of other noncontractile related proteins. The uptake also increased during the second week, probably due to hyperplasia, a finding also supported by electron microscopy. Our results suggest that one bout of weight-lifting exercise in untrained rats induced muscle hyperplasia following regeneration. The process of muscle hyperplasia was activated by muscle fiber damage in our model.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验