Orville A M, Lipscomb J D, Ohlendorf D H
Department of Biochemistry, Medical School, and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455-0347, USA.
Biochemistry. 1997 Aug 19;36(33):10052-66. doi: 10.1021/bi970469f.
Protocatechuate 3,4-dioxygenase (3,4-PCD) utilizes a ferric ion to catalyze the aromatic ring cleavage of 3,4-dihydroxybenzoate (PCA) by incorporation of both atoms of dioxygen to yield beta-carboxy-cis, cis-muconate. The crystal structures of the anaerobic 3,4-PCD.PCA complex, aerobic complexes with two heterocyclic PCA analogs, 2-hydroxyisonicotinic acid N-oxide (INO) and 6-hydroxynicotinic acid N-oxide (NNO), and ternary complexes of 3,4-PCD.INO.CN and 3,4-PCD. NNO.CN have been determined at 2.1-2.2 A resolution and refined to R-factors between 0.165 and 0.184. PCA, INO, and NNO form very similar, asymmetrically chelated complexes with the active site Fe3+ that result in dissociation of the endogenous axial tyrosinate Fe3+ ligand, Tyr447 (147beta). After its release from the iron, Tyr447 is stabilized by hydrogen bonding to Tyr16 (16alpha) and Asp413 (113beta) and forms the top of a small cavity adjacent to the C3-C4 bond of PCA. The equatorial Fe3+ coordination site within this cavity is unoccupied in the anaerobic 3,4-PCD.PCA complex but coordinates a solvent molecule in the 3,4-PCD.INO and 3,4-PCD.NNO complexes and CN- in the 3,4-PCD.INO.CN and 3,4-PCD.NNO.CN complexes. This shows that an O2 analog can occupy the cavity and suggests that electrophilic O2 attack on PCA is initiated from this site. Both the dissociation of the endogenous Tyr447 and the expansion of the iron coordination sphere are novel features of the 3,4-PCD. substrate complex which appear to play essential roles in the activation of substrate for O2 attack. Together, the structures presented here and in the preceding paper [Orville, A. M., Elango, N. , Lipscomb, J. D., & Ohlendorf, D. H. (1997) Biochemistry 36, 10039-10051] provide atomic models for several steps in the reaction cycle of 3,4-PCD and related Fe3+-containing dioxygenases.
原儿茶酸3,4 -双加氧酶(3,4 - PCD)利用铁离子催化3,4 -二羟基苯甲酸(PCA)的芳香环裂解,通过结合双氧的两个原子生成β -羧基 -顺,顺 -粘康酸。已测定了厌氧的3,4 - PCD.PCA复合物、与两种杂环PCA类似物(2 -羟基异烟酸N -氧化物(INO)和6 -羟基烟酸N -氧化物(NNO))形成的需氧复合物以及3,4 - PCD.INO.CN和3,4 - PCD.NNO.CN三元复合物的晶体结构,分辨率为2.1 - 2.2 Å,并精修至R因子在0.165至0.184之间。PCA、INO和NNO与活性位点Fe3 +形成非常相似的不对称螯合复合物,导致内源性轴向酪氨酸铁3 +配体Tyr447(147β)解离。从铁上释放后,Tyr447通过与Tyr16(16α)和Asp413(113β)形成氢键而稳定,并形成与PCA的C3 - C4键相邻的一个小腔的顶部。在厌氧的3,4 - PCD.PCA复合物中,这个腔内的赤道Fe3 +配位位点未被占据,但在3,4 - PCD.INO和3,4 - PCD.NNO复合物中配位一个溶剂分子,在3,4 - PCD.INO.CN和3,4 - PCD.NNO.CN复合物中配位CN -。这表明一个O2类似物可以占据这个腔,并表明亲电的O2对PCA的攻击是从这个位点开始的。内源性Tyr447的解离和铁配位球的扩展都是3,4 - PCD底物复合物的新特征,它们似乎在底物被O2攻击的活化过程中起重要作用。本文以及前文[奥维尔,A.M.,埃兰戈,N.,利普斯科姆,J.D.,&奥伦多夫,D.H.(1997)生物化学杂志36,10039 - 10051]所展示的结构共同为3,4 - PCD和相关含Fe3 +的双加氧酶反应循环中的几个步骤提供了原子模型。