Suppr超能文献

序列间进化距离的置信区间以及与包括自展法在内的常用方法的比较。

Confidence intervals of evolutionary distances between sequences and comparison with usual approaches including the bootstrap method.

作者信息

Andrieu G, Caraux G, Gascuel O

机构信息

Département d'Informatique Fondamentale, L.I.R.M.M., Montpellier, France.

出版信息

Mol Biol Evol. 1997 Aug;14(8):875-82. doi: 10.1093/oxfordjournals.molbev.a025829.

Abstract

Two methods are commonly employed for evaluating the extent of the uncertainty of evolutionary distances between sequences: either some estimator of the variance of the distance estimator, or the bootstrap method. However, both approaches can be misleading, particularly when the evolutionary distance is small. We propose using another statistical method which does not have the same defect: interval estimation. We show how confidence intervals may be constructed for the Jukes and Cantor (1969) and Kimura two-parameter (1980) estimators. We compare the exact confidence intervals thus obtained with the approximate intervals derived by the two previous methods, using artificial and biological data. The results show that the usual methods clearly underestimate the variability when the substitution rate is low and when sequences are short. Moreover, our analysis suggests that similar results may be expected for other evolutionary distance estimators.

摘要

通常采用两种方法来评估序列间进化距离不确定性的程度

一是距离估计量方差的某种估计方法,二是自展法。然而,这两种方法都可能产生误导,尤其是当进化距离较小时。我们建议使用另一种没有同样缺陷的统计方法:区间估计。我们展示了如何为朱克斯和坎托(1969年)以及木村双参数(1980年)估计量构建置信区间。我们使用人工数据和生物数据,将由此获得的精确置信区间与通过前两种方法得出的近似区间进行比较。结果表明,当替换率较低且序列较短时,常用方法明显低估了变异性。此外,我们的分析表明,对于其他进化距离估计量可能会得到类似的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验