Suppr超能文献

核苷酸替换模型中替换数的置信区间。

Confidence intervals for the substitution number in the nucleotide substitution models.

机构信息

Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan.

出版信息

Mol Phylogenet Evol. 2011 Sep;60(3):472-9. doi: 10.1016/j.ympev.2011.05.013. Epub 2011 May 26.

Abstract

In the nucleotide substitution model for molecular evolution, a major task in the exploration of an evolutionary process is to estimate the substitution number per site of a protein or DNA sequence. The usual estimators are based on the observation of the difference proportion of the two nucleotide sequences. However, a more objective approach is to report a confidence interval with precision rather than only providing point estimators. The conventional confidence intervals used in the literature for the substitution number are constructed by the normal approximation. The performance and construction of confidence intervals for evolutionary models have not been much investigated in the literature. In this article, the performance of these conventional confidence intervals for one-parameter and two-parameter models are explored. Results show that the coverage probabilities of these intervals are unsatisfactory when the true substitution number is small. Since the substitution number may be small in many situations for an evolutionary process, the conventional confidence interval cannot provide accurate information for these cases. Improved confidence intervals for the one-parameter model with desirable coverage probability are proposed in this article. A numerical calculation shows the substantial improvement of the new confidence intervals over the conventional confidence intervals.

摘要

在分子进化的核苷酸替换模型中,探索进化过程的主要任务之一是估计蛋白质或 DNA 序列每个位置的替换数量。常用的估计器基于观察两个核苷酸序列之间的差异比例。然而,更客观的方法是报告具有精度的置信区间,而不仅仅是提供点估计值。文献中用于替换数的常规置信区间是通过正态逼近构造的。文献中对进化模型的置信区间的性能和构造并没有进行太多研究。本文探讨了单参数和双参数模型中这些传统置信区间的性能。结果表明,当真实替换数较小时,这些区间的覆盖率概率不理想。由于在许多情况下,进化过程中的替换数可能很小,因此对于这些情况,传统的置信区间不能提供准确的信息。本文提出了一种具有理想覆盖率概率的单参数模型的改进置信区间。数值计算表明,新的置信区间比传统的置信区间有实质性的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验