Trayanova N, Bray M A
Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA.
J Cardiovasc Electrophysiol. 1997 Jul;8(7):745-57. doi: 10.1111/j.1540-8167.1997.tb00833.x.
This modeling study examines the effect of low-intensity monophasic and biphasic waveforms on the response of a refractory cardiac fiber to the defibrillation shock.
Two cardiac fiber representations are considered in this study: a continuous fiber and a discrete fiber that incorporates gap junctions. Each fiber is undergoing a propagating action potential. Shocks of various strengths and coupling intervals are delivered extracellularly at fiber ends during the relative refractory period. In a continuous fiber, monophasic shock strengths of three times the diastolic threshold either elicit no response or, for coupling intervals above 380 msec, reinitiate propagation. In contrast, biphasic shocks of same strength are capable of terminating the existing wavefronts by either invoking a nonpropagating response (coupling intervals 370 to 382 msec) that prolongs the refractory period or inducing wavefront collision (coupling intervals above 400 msec). The fiber response is similar for other shock strengths and when cellular discontinuity is accounted for. Thus, for a refractory fiber, biphasic shocks have only a small "vulnerable" window of coupling intervals over which propagation is reinitiated.
At short coupling intervals, a significant extension of refractoriness is generated at regions where the biphasic shock induced hyperpolarization followed by depolarization. At large coupling intervals, the enhanced efficacy of biphasic shocks is associated with their ability to induce wavefront collision, thus decreasing the probability of reinitiating fibrillation. Overall, the defibrillation shock affects the tissue through the induced large-scale hyperpolarization and depolarization, and not through the small-scale transmembrane potential oscillations at cell ends.
本建模研究考察了低强度单相和双相波形对难治性心脏纤维对除颤电击反应的影响。
本研究考虑了两种心脏纤维模型:连续纤维和包含间隙连接的离散纤维。每种纤维都在经历传播动作电位。在相对不应期,在纤维末端细胞外施加不同强度和耦合间隔的电击。在连续纤维中,舒张阈值三倍的单相电击强度要么不引起反应,要么对于耦合间隔超过380毫秒的情况,重新引发传播。相比之下,相同强度的双相电击能够通过引发延长不应期的非传播反应(耦合间隔370至382毫秒)或诱导波前碰撞(耦合间隔超过400毫秒)来终止现有的波前。对于其他电击强度以及考虑细胞不连续性时,纤维反应相似。因此,对于难治性纤维,双相电击只有一个很小的耦合间隔“易损”窗口,在此窗口内传播会重新引发。
在短耦合间隔时,双相电击诱导超极化后再去极化的区域会产生不应期的显著延长。在大耦合间隔时,双相电击增强的效果与其诱导波前碰撞的能力有关,从而降低了重新引发颤动的概率。总体而言,除颤电击通过诱导大规模超极化和去极化影响组织,而不是通过细胞末端的小规模跨膜电位振荡。