Suppr超能文献

神经前体细胞:在中枢神经系统研究与修复中的应用

Neural precursor cells: applications for the study and repair of the central nervous system.

作者信息

Fisher L J

机构信息

Laboratory of Genetics, Salk Institute for Biological Sciences, San Diego, California 92186-5800, USA.

出版信息

Neurobiol Dis. 1997;4(1):1-22. doi: 10.1006/nbdi.1997.0137.

Abstract

A combination of gene transfer and intracerebral transplantation techniques has been used in studies of CNS development to provide the most compelling evidence to date that the broad diversity of cell types that exist in the CNS arises from single precursor cells. Although the factors that influence cellular differentiation in vivo remain to be clarified, work conducted in vitro with neural precursors has demonstrated that environmental signals (both soluble factors and substrate molecules) play a pivotal role in these decisions. In particular, FGF-2 appears to be one of the prominent influential factors involved in CNS development (see Temple & Qian, 1995). The generation of immortalized precursor populations that are capable of differentiating into multiple CNS cell types in vivo has significant implications for the treatment of neural dysfunction. Such cells may be manipulated toward a lineage that synthesizes factors of interest and used in grafting strategies to replace substances that are lost after injury or in neurodegenerative disease. Alternatively, precursor cells may be directed to a neuronal lineage and used to functionally repair damaged neural systems. Finally, genetic modification of precursor populations provides a method for introducing therapeutic gene products both into discrete regions of the brain and into widely dispersed areas of the CNS. In considering applications to human disease, it has been reported that nestin is expressed in human neuroepithelial cells (Tohyama et al., 1992), suggesting the existence of neural precursors. Recently, such precursors were in fact isolated by two separate groups (Kirschenbaum et al., 1994; Sabaté et al., 1995) and shown to be amenable to gene transfer and to successfully survive transplantation into the brain of experimental animals (Sabaté et al., 1995). Such findings encourage the possibility that precursor cells from the human CNS may be utilized in cell replacement or gene therapy strategies directed toward human neurodegenerative disorders. While immortalization techniques have been essential for generating large quantities of precursor cells for study and transplantation, the genetic modification of cells may alter vital cellular properties. Thus, the ability to induce the proliferation of nonimmortalized neural populations in vitro with the use of growth factors (see section on CNS precursor cells above) provides an important alternative approach for developing perpetual neural cell lines. Recent work with such growth factor-responsive precursor cells has suggested their therapeutic potential in the CNS, as evidenced by the finding that FGF-2-responsive cells can successfully engraft and express transgenes in the adult brain (Gage et al., 1995; Sabaté et al., 1995; Suhonen et al., 1996). Continuing studies with these cells will provide additional insight into the properties of primary CNS stem cells and increase the range of precursor populations that are useful for exploring the development, function, and plasticity of the CNS.

摘要

基因转移和脑内移植技术相结合已用于中枢神经系统(CNS)发育的研究,以提供迄今为止最有说服力的证据,证明CNS中存在的多种细胞类型源自单一前体细胞。尽管影响体内细胞分化的因素仍有待阐明,但对神经前体细胞进行的体外研究表明,环境信号(可溶性因子和底物分子)在这些决定中起关键作用。特别是,成纤维细胞生长因子2(FGF - 2)似乎是参与CNS发育的主要影响因素之一(见Temple和Qian,1995)。能够在体内分化为多种CNS细胞类型的永生化前体细胞群体的产生,对神经功能障碍的治疗具有重要意义。此类细胞可被诱导分化为合成感兴趣因子的谱系,并用于移植策略,以替代损伤后或神经退行性疾病中丢失的物质。或者,前体细胞可被定向分化为神经元谱系,并用于功能性修复受损的神经系统。最后,对前体细胞群体进行基因改造,提供了一种将治疗性基因产物引入脑的离散区域和CNS广泛分散区域的方法。在考虑将其应用于人类疾病时,已有报道称巢蛋白在人类神经上皮细胞中表达(Tohyama等人,1992),这表明存在神经前体细胞。最近,事实上两个独立的研究小组分离出了此类前体细胞(Kirschenbaum等人,1994;Sabaté等人,1995),并表明它们易于进行基因转移,且成功存活并移植到实验动物的脑中(Sabaté等人,1995)。这些发现增加了一种可能性,即人类CNS的前体细胞可用于针对人类神经退行性疾病的细胞替代或基因治疗策略。虽然永生化技术对于产生大量用于研究和移植的前体细胞至关重要,但细胞的基因改造可能会改变重要的细胞特性。因此,利用生长因子在体外诱导非永生化神经细胞群体增殖的能力(见上文关于CNS前体细胞的部分),为开发永久性神经细胞系提供了一种重要的替代方法。最近对这种对生长因子有反应的前体细胞的研究表明了它们在CNS中的治疗潜力,如FGF - 2反应性细胞能够在成年脑中成功移植并表达转基因这一发现所证明(Gage等人,1995;Sabaté等人,1995;Suhonen等人,1996)。对这些细胞的持续研究将进一步深入了解原发性CNS干细胞的特性,并增加可用于探索CNS发育、功能和可塑性的前体细胞群体的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验