Suppr超能文献

Changes in extracellular nitrite and nitrate levels after inhibition of glial metabolism with fluorocitrate.

作者信息

Yamada K, Senzaki K, Komori Y, Nikai T, Sugihara H, Nabeshima T

机构信息

Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Showa-ku, Japan.

出版信息

Brain Res. 1997 Jul 11;762(1-2):72-8. doi: 10.1016/s0006-8993(97)00372-7.

Abstract

The role of glial cells in nitric oxide production in the cerebellum of conscious rats was investigated with a glial selective metabolic inhibitor, fluorocitrate. The levels of nitric oxide metabolites (nitrite plus nitrate) in the dialysate following in vivo microdialysis progressively increased to more than 2-fold the basal levels during a 2-h infusion of fluorocitrate (1 mM), and the increase persisted for more than 2 h after the treatment. Pretreatment with N(G)-nitro-L-arginine methyl ester attenuated the fluorocitrate-induced increase in nitric oxide metabolite levels. None of the glutamate receptor antagonists, including D(-)-2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline-2,3-dione, and (+/-)-alpha-methyl-4-carboxyphenylglycine, inhibited the fluorocitrate-induced increase. The L-arginine-induced increase was significantly reduced by fluorocitrate treatment, while N-methyl-D-aspartate, (+)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and trans-(+/-)-1-amino-(1S,3R)-cyclopentane-dicarboxylic acid increased nitric oxide metabolites levels in the fluorocitrate-treated rats, as much as in control animals. These results suggest that glial cells play an important role in modulating nitric oxide production in the cerebellum by regulating L-arginine availability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验