Suppr超能文献

生物等效性研究中的有限采样法。

A limited sampling approach in bioequivalence studies.

作者信息

Mahmood I, Chamberlin N, Tammara V

机构信息

Division of Pharmaceutical Evaluation I, Office of Clinical Pharmacology and Biopharmaceutics, Food & Drug Administration, Rockville, MD 20852, USA.

出版信息

Ther Drug Monit. 1997 Aug;19(4):413-9. doi: 10.1097/00007691-199708000-00009.

Abstract

A limited sampling model (LSM) has been developed for an antidepressant immediate-release product (Drug A) and an antiepileptic controlled release product (Drug B) to predict the area under the curve (AUC) and the maximum plasma concentration (Cmax) and to compare the bioequivalence of two formulations of each drug using predicted versus observed AUC and Cmax after a single oral dose. The LSM for drug A was developed using data from 10 healthy people. The correlation between plasma concentration (independent variable) at selected time points with the AUC or Cmax (dependent variable) was evaluated by simple regression analysis. The linear regression that gave the best correlation coefficient (r) for a single sampling time versus AUC or Cmax was chosen as the LSM. The model provided good estimates of AUC and Cmax for drug A. The 90% confidence interval on log transformed observed and predicted AUC and Cmax were as follows: AUC observed = 100% to 118%, AUC predicted = 101% to 117%, Cmax observed = 99% to 125%, and Cmax predicted = 100% to 131%. The LSM for drug B was developed using a similar approach to drug A. The 90% confidence interval on log transformed observed and predicted AUC and Cmax were: AUC observed = 99% to 110%, AUC predicted = 99% to 118%, Cmax observed = 107% to 120%, and Cmax predicted = 99% to 111%. Although the predicted Cmax did not meet the 90% confidence interval for drug A, the method described here may be used to estimate AUC and Cmax for a drug in bioequivalence studies without detailed blood sampling. More research is needed in this direction.

摘要

已针对一种抗抑郁速释产品(药物A)和一种抗癫痫控释产品(药物B)开发了一种有限采样模型(LSM),以预测曲线下面积(AUC)和最大血浆浓度(Cmax),并在单次口服给药后,使用预测的与观察到的AUC和Cmax来比较每种药物两种制剂的生物等效性。药物A的LSM是使用来自10名健康人的数据开发的。通过简单回归分析评估选定时间点的血浆浓度(自变量)与AUC或Cmax(因变量)之间的相关性。选择在单个采样时间与AUC或Cmax给出最佳相关系数(r)的线性回归作为LSM。该模型对药物A的AUC和Cmax提供了良好的估计。对数转换后的观察到的和预测的AUC及Cmax的90%置信区间如下:观察到的AUC = 100%至118%,预测的AUC = 101%至117%,观察到的Cmax = 99%至125%,预测的Cmax = 100%至131%。药物B的LSM采用与药物A类似的方法开发。对数转换后的观察到的和预测的AUC及Cmax的90%置信区间为:观察到的AUC = 99%至110%,预测的AUC = 99%至118%,观察到的Cmax = 107%至120%,预测的Cmax = 99%至111%。尽管预测的Cmax未满足药物A的90%置信区间,但此处描述的方法可用于生物等效性研究中估计药物的AUC和Cmax,而无需进行详细的血样采集。在这个方向上还需要更多的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验