Ho K K, Moody G B, Peng C K, Mietus J E, Larson M G, Levy D, Goldberger A L
Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, Mass 02215-5491, USA.
Circulation. 1997 Aug 5;96(3):842-8. doi: 10.1161/01.cir.96.3.842.
Despite much recent interest in quantification of heart rate variability (HRV), the prognostic value of conventional measures of HRV and of newer indices based on nonlinear dynamics is not universally accepted.
We have designed algorithms for analyzing ambulatory ECG recordings and measuring HRV without human intervention, using robust methods for obtaining time-domain measures (mean and SD of heart rate), frequency-domain measures (power in the bands of 0.001 to 0.01 Hz [VLF], 0.01 to 0.15 Hz [LF], and 0.15 to 0.5 Hz [HF] and total spectral power [TP] over all three of these bands), and measures based on nonlinear dynamics (approximate entropy [ApEn], a measure of complexity, and detrended fluctuation analysis [DFA], a measure of long-term correlations). The study population consisted of chronic congestive heart failure (CHF) case patients and sex- and age-matched control subjects in the Framingham Heart Study. After exclusion of technically inadequate studies and those with atrial fibrillation, we used these algorithms to study HRV in 2-hour ambulatory ECG recordings of 69 participants (mean age, 71.7+/-8.1 years). By use of separate Cox proportional-hazards models, the conventional measures SD (P<.01), LF (P<.01), VLF (P<.05), and TP (P<.01) and the nonlinear measure DFA (P<.05) were predictors of survival over a mean follow-up period of 1.9 years; other measures, including ApEn (P>.3), were not. In multivariable models, DFA was of borderline predictive significance (P=.06) after adjustment for the diagnosis of CHF and SD.
These results demonstrate that HRV analysis of ambulatory ECG recordings based on fully automated methods can have prognostic value in a population-based study and that nonlinear HRV indices may contribute prognostic value to complement traditional HRV measures.
尽管近期人们对心率变异性(HRV)的量化颇感兴趣,但HRV的传统测量方法以及基于非线性动力学的新指标的预后价值尚未得到普遍认可。
我们设计了用于分析动态心电图记录和测量HRV的算法,无需人工干预,采用稳健的方法来获取时域测量值(心率的均值和标准差)、频域测量值(0.001至0.01赫兹频段[极低频,VLF]、0.01至0.15赫兹频段[低频,LF]以及0.15至0.5赫兹频段[高频,HF]的功率以及这三个频段的总谱功率[TP]),以及基于非线性动力学的测量值(近似熵[ApEn],一种复杂性测量指标,和去趋势波动分析[DFA],一种长期相关性测量指标)。研究人群包括弗雷明汉心脏研究中的慢性充血性心力衰竭(CHF)病例患者以及性别和年龄匹配的对照受试者。在排除技术上不充分的研究以及伴有心房颤动的研究后,我们使用这些算法对69名参与者(平均年龄71.7±8.1岁)的2小时动态心电图记录中的HRV进行研究。通过使用单独的Cox比例风险模型,传统测量指标标准差(P<0.01)、低频(P<0.01)、极低频(P<0.05)和总谱功率(P<;0.01)以及非线性测量指标去趋势波动分析(P<0.05)是平均随访1.9年期间生存情况的预测指标;其他测量指标,包括近似熵(P>0.3),则不是。在多变量模型中,在对CHF诊断和标准差进行调整后,去趋势波动分析具有临界预测意义(P = 0.06)。
这些结果表明,基于全自动方法的动态心电图记录的HRV分析在基于人群的研究中可能具有预后价值,并且非线性HRV指标可能有助于补充传统HRV测量指标的预后价值。