Suppr超能文献

Fatty acid induced insulin resistance in rat-1 fibroblasts overexpressing human insulin receptors: impaired insulin-stimulated mitogen-activated protein kinase activity.

作者信息

Usui I, Takata Y, Imamura T, Morioka H, Sasaoka T, Sawa T, Ishihara H, Ishiki M, Kobayashi M

机构信息

The First Department of Medicine, Toyama Medical and Pharmaceutical University, Japan.

出版信息

Diabetologia. 1997 Aug;40(8):894-901. doi: 10.1007/s001250050765.

Abstract

Saturated fatty acids cause insulin resistance but the underlying molecular mechanism is still unknown. We examined the effect of saturated nonesterified fatty acids on insulin binding and action in transfected Rat-1 fibroblasts, which over-expressed human insulin receptors. Incubation with 1.0 mmol/l palmitate for 1-4 h did not affect insulin binding, insulin receptor autophosphorylation, insulin-stimulated tyrosine kinase activity toward poly(Glu4:Tyr1), pp185 and Shc phosphorylation and PI3-kinase activity in these cells. However, the dose response curve of insulin-stimulated glucose transport was right-shifted. Palmitate inhibited the maximally insulin-stimulated mitogen activated protein (MAP) kinase activity toward synthetic peptide to 7% that of control. The palmitate treatment influenced neither cytosolic protein kinase A activity nor cAMP levels. These results suggested that 1) palmitate did not inhibit the early steps of insulin action from insulin binding to pp185 or Shc phosphorylation but inhibited insulin-stimulated MAP kinase, and that 2) palmitate decreased insulin sensitivity as manifested by inhibited insulin-stimulated glucose uptake. In conclusion, the mechanism of saturated non-esterified fatty acid induced insulin resistance in glucose uptake may reside at post PI3-kinase or Shc steps, including the level of MAP kinase activation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验