Suppr超能文献

Cerebral oxygen transport and metabolism during graded isovolemic hemodilution in experimental global ischemia.

作者信息

Tu Y K, Kuo M F, Liu H M

机构信息

Department of Surgery, National Taiwan University College of Medicine, Taipei.

出版信息

J Neurol Sci. 1997 Sep 10;150(2):115-22. doi: 10.1016/s0022-510x(97)00111-1.

Abstract

To verify the optimal hematocrit (Hct) level in the treatment of cerebral ischemia, cerebral oxygen transport (CTO2) and cerebral oxygen metabolism (CMRO2) in graded isovolemic hemodilution were evaluated during cerebral ischemia. Isovolemic hemodilution with low molecular weight dextran to stepwise lower Hct from 43% to 36%, 31%, and 26% was carried out in 13 splenectomized dogs, 6 h after global cerebral ischemia. Global ischemia of the animals was produced by multiple intra- and extracranial ligations of cerebral arteries. Cerebral blood flow (CBF) was measured with radioisotope labeled microspheres. CTO2, CMRO2, and oxygen extraction fraction (OEF) were calculated from CBF, arterial oxygen content (CaO2), and venous oxygen content (CvO2). In dogs with global cerebral ischemia, CBF increased with graded isovolemic hemodilution (r=-0.73, P<0.05). CTO2 reached its highest value at a Hct level of 31.3%. CTO2 at Hct of 36.1% and 31.3% was statistically different from the value measured at a Hct of 43.3%, and there was a decrease when Hct was lowered to 25.9%. CMRO2 was the highest when Hct was at 31.3% and differed significantly from the value measured at a Hct of 43.3%. There was a 10% increase of OEF when Hct was at 25.9%; however this change was not statistically significant compared with the OEF at Hct of 36.1% and 31.3%, respectively. These findings indicate that CTO2 and CMRO2 were the highest when Hct was reduced to 31% in hemodilution. Hct at 31% is the optimum for cerebral metabolism in ischemic status. Uncoupling of CTO2, CMRO2 with CaO2 was also observed in this study. This phenomenon suggests that hemodilution to augment cerebral circulation may be at least partially attributed to the beneficial effects of hemorheologic improvement in the microcirculation of the ischemic brain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验